↓ Skip to main content

A versatile papaya mosaic virus (PapMV) vaccine platform based on sortase-mediated antigen coupling

Overview of attention for article published in Journal of Nanobiotechnology, July 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A versatile papaya mosaic virus (PapMV) vaccine platform based on sortase-mediated antigen coupling
Published in
Journal of Nanobiotechnology, July 2017
DOI 10.1186/s12951-017-0289-y
Pubmed ID
Authors

Ariane Thérien, Mikaël Bédard, Damien Carignan, Gervais Rioux, Louis Gauthier-Landry, Marie-Ève Laliberté-Gagné, Marilène Bolduc, Pierre Savard, Denis Leclerc

Abstract

Flexuous rod-shaped nanoparticles made of the coat protein (CP) of papaya mosaic virus (PapMV) have been shown to trigger innate immunity through engagement of toll-like receptor 7 (TLR7). PapMV nanoparticles can also serve as a vaccine platform as they can increase the immune response to fused peptide antigens. Although this approach shows great potential, fusion of antigens directly to the CP open reading frame (ORF) is challenging because the fused peptides can alter the structure of the CP and its capacity to self assemble into nanoparticles-a property essential for triggering an efficient immune response to the peptide. This represents a serious limitation to the utility of this approach as fusion of small peptides only is tolerated. We have developed a novel approach in which peptides are fused directly to pre-formed PapMV nanoparticles. This approach is based on the use of a bacterial transpeptidase (sortase A; SrtA) that can attach the peptide directly to the nanoparticle. An engineered PapMV CP harbouring the SrtA recognition motif allows efficient coupling. To refine our engineering, and to predict the efficacy of coupling with SrtA, we modeled the PapMV structure based on the known structure of PapMV CP and on recent reports revealing the structure of two closely related potexviruses: pepino mosaic virus (PepMV) and bamboo mosaic virus (BaMV). We show that SrtA can allow the attachment of long peptides [Influenza M2e peptide (26 amino acids) and the HIV-1 T20 peptide (39 amino acids)] to PapMV nanoparticles. Consistent with our PapMV structural model, we show that around 30% of PapMV CP subunits in each nanoparticle can be fused to the peptide antigen. As predicted, engineered nanoparticles were capable of inducing a strong antibody response to the fused antigen. Finally, in a challenge study with influenza virus, we show that mice vaccinated with PapMV-M2e are protected from infection. This technology will allow the development of vaccines harbouring long peptides containing several B and/or T cell epitopes that can contribute to a broad and robust protection from infection. The design can be fast, versatile and can be adapted to the development of vaccines for many infectious diseases as well as cancer vaccines.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 21%
Researcher 10 18%
Student > Master 8 14%
Student > Bachelor 3 5%
Other 2 4%
Other 4 7%
Unknown 17 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 21%
Biochemistry, Genetics and Molecular Biology 8 14%
Chemistry 4 7%
Immunology and Microbiology 4 7%
Veterinary Science and Veterinary Medicine 1 2%
Other 7 13%
Unknown 20 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 January 2018.
All research outputs
#19,015,492
of 23,577,654 outputs
Outputs from Journal of Nanobiotechnology
#960
of 1,534 outputs
Outputs of similar age
#242,396
of 315,766 outputs
Outputs of similar age from Journal of Nanobiotechnology
#8
of 12 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,534 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,766 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.