↓ Skip to main content

Laccase-derived lignin compounds boost cellulose oxidative enzymes AA9

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, January 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

twitter
15 X users

Citations

dimensions_citation
94 Dimensions

Readers on

mendeley
162 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Laccase-derived lignin compounds boost cellulose oxidative enzymes AA9
Published in
Biotechnology for Biofuels and Bioproducts, January 2018
DOI 10.1186/s13068-017-0985-8
Pubmed ID
Authors

Lívia Brenelli, Fabio M. Squina, Claus Felby, David Cannella

Abstract

The discovery of lignin as activator for the redox enzyme lytic polysaccharide monooxygenases (LPMOs) for the oxidation of cell-wall polysaccharides opens a new scenario for investigation of the interplay between different lignocellulose-degrading enzymes. The lignin-active enzymes in one hand, and the carbohydrate active in the other, are linked through a variety of electrons carrier molecules either derived from lignin or enzymatically transferred. Likewise, in nature, many lignocellulose-degrading organisms are expressing those enzymes simultaneously, and we wanted to test if a major commercial available lignin oxidase enzyme, i.e., laccase could benefit and synergize the activity of the LPMOs by depolymerizing the insoluble lignin. In this work, two fungal laccases together with a mediator (ABTS) were used to isolate low-molecular-weight lignin from lignocellulosic biomass. The isolated lignins were used as electron donors for activation of LPMOs. A direct correlation between the low-molecular-weight lignin isolated with laccases and an increased activity of a cellulolytic cocktail containing LPMO was found when pure cellulose was hydrolyzed. We then tried to implement existing commercial cellulases cocktail with laccase enzymes, but under the conditions tested, the co-incubation of laccases with LPMOs showed a substrate competition towards oxygen inhibiting the LPMO. In addition, we found that laccase treatment may cause other modifications to pure cellulose, rendering the material more recalcitrant for enzymatic saccharification. Laccase-mediated system was able to depolymerize lignin from pre-treated and native sugarcane bagasse and wheat straw, and the released phenolic molecules were able to donate electrons to LPMO enzymes boosting the overall enzymatic hydrolysis of cellulose. Likewise, other poly-phenol oxidase, we might have just started showing possible pros or cons in applying several oxidase enzymes for a simultaneous degradation of cellulose and lignin, and we found that the competition towards oxygen and their different consumption rates must be taken into account for any possible co-application.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 162 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 162 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 32 20%
Researcher 26 16%
Student > Master 23 14%
Student > Bachelor 12 7%
Student > Doctoral Student 6 4%
Other 22 14%
Unknown 41 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 37 23%
Agricultural and Biological Sciences 25 15%
Chemistry 11 7%
Chemical Engineering 10 6%
Engineering 7 4%
Other 17 10%
Unknown 55 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 December 2018.
All research outputs
#4,222,536
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#234
of 1,578 outputs
Outputs of similar age
#86,569
of 451,258 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#7
of 41 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 451,258 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.