↓ Skip to main content

Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, October 2016
Altmetric Badge

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion
Published in
Biotechnology for Biofuels and Bioproducts, October 2016
DOI 10.1186/s13068-016-0639-2
Pubmed ID
Authors

Chien-Yuan Lin, Joseph E. Jakes, Bryon S. Donohoe, Peter N. Ciesielski, Haibing Yang, Sophie-Charlotte Gleber, Stefan Vogt, Shi-You Ding, Wendy A. Peer, Angus S. Murphy, Maureen C. McCann, Michael E. Himmel, Melvin P. Tucker, Hui Wei

Abstract

Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited, and increases the cost of biorefinery operations. Recently, we developed a new strategy for expressing iron-storage protein ferritin intracellularly to accumulate iron as a catalyst for the downstream deconstruction of lignocellulosic biomass. In this study, we extend this approach by fusing the heterologous ferritin gene with a signal peptide for secretion into Arabidopsis cell walls (referred to here as FerEX). The transgenic Arabidopsis plants. FerEX. accumulated iron under both normal and iron-fertilized growth conditions; under the latter (iron-fertilized) condition, FerEX transgenic plants showed an increase in plant height and dry weight by 12 and 18 %, respectively, compared with the empty vector control plants. The SDS- and native-PAGE separation of cell-wall protein extracts followed by Western blot analyses confirmed the extracellular expression of ferritin in FerEX plants. Meanwhile, Perls' Prussian blue staining and X-ray fluorescence microscopy (XFM) maps revealed iron depositions in both the secondary and compound middle lamellae cell-wall layers, as well as in some of the corner compound middle lamella in FerEX. Remarkably, their harvested biomasses showed enhanced pretreatability and digestibility, releasing, respectively, 21 % more glucose and 34 % more xylose than the empty vector control plants. These values are significantly higher than those of our recently obtained ferritin intracellularly expressed plants. This study demonstrated that extracellular expression of ferritin in Arabidopsis can produce plants with increased growth and iron accumulation, and reduced thermal and enzymatic recalcitrance. The results are attributed to the intimate colocation of the iron co-catalyst and the cellulose and hemicellulose within the plant cell-wall region, supporting the genetic modification strategy for incorporating conversion catalysts into energy crops prior to harvesting or processing at the biorefinery.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 25%
Student > Bachelor 3 11%
Student > Master 3 11%
Student > Ph. D. Student 2 7%
Professor 2 7%
Other 2 7%
Unknown 9 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 29%
Biochemistry, Genetics and Molecular Biology 4 14%
Engineering 2 7%
Materials Science 2 7%
Environmental Science 1 4%
Other 2 7%
Unknown 9 32%