↓ Skip to main content

Improving the interoperability of biomedical ontologies with compound alignments

Overview of attention for article published in Journal of Biomedical Semantics, January 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Improving the interoperability of biomedical ontologies with compound alignments
Published in
Journal of Biomedical Semantics, January 2018
DOI 10.1186/s13326-017-0171-8
Pubmed ID
Authors

Daniela Oliveira, Catia Pesquita

Abstract

Ontologies are commonly used to annotate and help process life sciences data. Although their original goal is to facilitate integration and interoperability among heterogeneous data sources, when these sources are annotated with distinct ontologies, bridging this gap can be challenging. In the last decade, ontology matching systems have been evolving and are now capable of producing high-quality mappings for life sciences ontologies, usually limited to the equivalence between two ontologies. However, life sciences research is becoming increasingly transdisciplinary and integrative, fostering the need to develop matching strategies that are able to handle multiple ontologies and more complex relations between their concepts. We have developed ontology matching algorithms that are able to find compound mappings between multiple biomedical ontologies, in the form of ternary mappings, finding for instance that "aortic valve stenosis"(HP:0001650) is equivalent to the intersection between "aortic valve"(FMA:7236) and "constricted" (PATO:0001847). The algorithms take advantage of search space filtering based on partial mappings between ontology pairs, to be able to handle the increased computational demands. The evaluation of the algorithms has shown that they are able to produce meaningful results, with precision in the range of 60-92% for new mappings. The algorithms were also applied to the potential extension of logical definitions of the OBO and the matching of several plant-related ontologies. This work is a first step towards finding more complex relations between multiple ontologies. The evaluation shows that the results produced are significant and that the algorithms could satisfy specific integration needs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 23%
Student > Master 6 17%
Researcher 6 17%
Student > Doctoral Student 4 11%
Student > Bachelor 1 3%
Other 2 6%
Unknown 8 23%
Readers by discipline Count As %
Computer Science 15 43%
Agricultural and Biological Sciences 5 14%
Biochemistry, Genetics and Molecular Biology 3 9%
Engineering 2 6%
Medicine and Dentistry 1 3%
Other 1 3%
Unknown 8 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 December 2020.
All research outputs
#12,768,437
of 23,016,919 outputs
Outputs from Journal of Biomedical Semantics
#171
of 364 outputs
Outputs of similar age
#200,142
of 443,116 outputs
Outputs of similar age from Journal of Biomedical Semantics
#6
of 13 outputs
Altmetric has tracked 23,016,919 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 364 research outputs from this source. They receive a mean Attention Score of 4.6. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,116 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.