↓ Skip to main content

Unconjugated bilirubin induces pyroptosis in cultured rat cortical astrocytes

Overview of attention for article published in Journal of Neuroinflammation, January 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
49 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Unconjugated bilirubin induces pyroptosis in cultured rat cortical astrocytes
Published in
Journal of Neuroinflammation, January 2018
DOI 10.1186/s12974-018-1064-1
Pubmed ID
Authors

Jie Feng, Mengwen Li, Qian Wei, Shengjun Li, Sijie Song, Ziyu Hua

Abstract

Bilirubin-induced neurological dysfunction (BIND), a severe complication of extreme neonatal hyperbilirubinemia, could develop into permanent neurodevelopmental impairments. Several studies have demonstrated that inflammation and nerve cell death play important roles in bilirubin-induced neurotoxicity; however, the underlying mechanism remains unidentified. The present study was intended to investigate whether pyroptosis, a highly inflammatory form of programmed cell death, participated in the bilirubin-mediated toxicity on cultured rat cortical astrocytes. Further, VX-765, a potent and selective competitive drug, was used to inhibit the activation of caspase-1. The effects of VX-765 on astrocytes treated with bilirubin, including the cell viability, morphological changes of the cell membrane and nucleus, and the production of pro-inflammation cytokines, were observed. Stimulation of the astrocytes with unconjugated bilirubin (UCB) at the conditions mimicking those of jaundiced newborns significantly increased the activation of caspase-1. Further, caspase-1 activation was inhibited by treatment with VX-765. Compared with UCB-treated astrocytes, the relative cell viability of VX-765-pretreated astrocytes was improved; meanwhile, the formation of plasma membrane pores was prevented, as measured by lactate dehydrogenase release, trypan blue staining, and ethidium bromide (EtBr) uptake. Moreover, DNA fragmentation was partly attenuated and the release of IL-1β and IL-18 was apparently decreased. Pyroptosis is involved in the process of UCB-induced rat cortical astrocytes' injury in vitro and may be the missing link of cell death and inflammatory response exacerbating UCB-related neurotoxicity. More importantly, the depression of caspase-1 activation, the core link of pyroptosis, attenuated UCB-induced cellular dysfunction and cytokine release, which might shed light on a new therapeutic approach to BIND.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 16%
Student > Ph. D. Student 4 16%
Student > Master 2 8%
Student > Postgraduate 2 8%
Student > Doctoral Student 1 4%
Other 2 8%
Unknown 10 40%
Readers by discipline Count As %
Psychology 4 16%
Medicine and Dentistry 4 16%
Nursing and Health Professions 2 8%
Immunology and Microbiology 1 4%
Veterinary Science and Veterinary Medicine 1 4%
Other 2 8%
Unknown 11 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 January 2018.
All research outputs
#18,584,192
of 23,018,998 outputs
Outputs from Journal of Neuroinflammation
#2,084
of 2,654 outputs
Outputs of similar age
#330,355
of 441,076 outputs
Outputs of similar age from Journal of Neuroinflammation
#55
of 73 outputs
Altmetric has tracked 23,018,998 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,654 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,076 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 73 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.