↓ Skip to main content

Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress

Overview of attention for article published in BMC Plant Biology, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
116 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress
Published in
BMC Plant Biology, January 2018
DOI 10.1186/s12870-018-1238-0
Pubmed ID
Authors

Fenni Deng, Xiaopei Zhang, Wei Wang, Rui Yuan, Fafu Shen

Abstract

Long non-coding RNAs (lncRNAs) represent a class of riboregulators that either directly act in long form or are processed into shorter microRNAs (miRNAs) and small interfering RNAs. Long noncoding RNAs (lncRNAs) are arbitrarily defined as RNA genes larger than 200 nt in length that have no apparent coding potential. lncRNAs have emerged as playing important roles in various biological regulatory processes and are expressed in a more tissue-specific manner than mRNA. Emerging evidence shows that lncRNAs participate in stress-responsive regulation. In this study, in order to develop a comprehensive catalogue of lncRNAs in upland cotton under salt stress, we performed whole-transcriptome strand-specific RNA sequencing for three-leaf stage cotton seedlings treated with salt stress (S_NaCl) and controls (S_CK). In total we identified 1117 unique lncRNAs in this study and 44 differentially expressed RNAs were identified as potential non-coding RNAs. For the differentially expressed lncRNAs that were identified as intergenic lncRNAs (lincRNA), we analysed the gene ontology enrichment of cis targets and found that cis target protein-coding genes were mainly enriched in stress-related categories. Real-time quantitative PCR confirmed that all selected lincRNAs responsive to salt stress. We found lnc_388 was likely as regulator of Gh_A09G1182. And lnc_883 may participate in regulating tolerance to salt stress by modulating the expression of Gh_D03G0339 MS_channel. We then predicted the target mimics for miRNA in Gossypium. six miRNAs were identified, and the result of RT-qPCR with lncRNA and miRNA suggested that lnc_973 and lnc_253 may regulate the expression of ghr-miR399 and ghr-156e as a target mimic under salt stress. We identified 44 lincRNAs that were differentially expressed under salt stress. These lincRNAs may target protein-coding genes via cis-acting regulation. We also discovered that specifically-expressed lincRNAs under salt stress may act as endogenous target mimics for conserved miRNAs. These findings extend the current view on lincRNAs as ubiquitous regulators under stress stress.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 17%
Student > Ph. D. Student 8 13%
Student > Doctoral Student 5 8%
Student > Master 5 8%
Student > Bachelor 2 3%
Other 7 11%
Unknown 26 41%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 36%
Biochemistry, Genetics and Molecular Biology 11 17%
Unspecified 1 2%
Engineering 1 2%
Unknown 28 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 August 2018.
All research outputs
#13,527,742
of 23,344,526 outputs
Outputs from BMC Plant Biology
#933
of 3,316 outputs
Outputs of similar age
#215,887
of 442,906 outputs
Outputs of similar age from BMC Plant Biology
#10
of 54 outputs
Altmetric has tracked 23,344,526 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,316 research outputs from this source. They receive a mean Attention Score of 3.0. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,906 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.