↓ Skip to main content

Changing oxidoreduction potential to improve water-soluble yellow pigment production with Monascus ruber CGMCC 10910

Overview of attention for article published in Microbial Cell Factories, November 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (55th percentile)
  • Good Attention Score compared to outputs of the same age and source (76th percentile)

Mentioned by

patent
1 patent

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Changing oxidoreduction potential to improve water-soluble yellow pigment production with Monascus ruber CGMCC 10910
Published in
Microbial Cell Factories, November 2017
DOI 10.1186/s12934-017-0828-0
Pubmed ID
Authors

Tao Huang, Hailing Tan, Fangju Lu, Gong Chen, Zhenqiang Wu

Abstract

Monascus pigments are widely used in the food and pharmaceutical industries due to their safety to human health. Our previous study found that glucose concentration induced extracellular oxidoreduction potential (ORP) changes could influence extracellular water-soluble yellow pigment production by Monascus ruber CGMCC 10910 in submerged fermentation. In this study, H2O2 and dithiothreitol (DTT) were used to change the oxidoreduction potential for investigating the effects of oxidative or reductive substances on Monascus yellow pigment production by Monascus ruber CGMCC 10910. The extracellular ORP could be controlled by H2O2 and DTT. Both cell growth and extracellular water-soluble yellow pigment production were enhanced under H2O2-induced oxidative (HIO) conditions and were inhibited under dithiothreitol-induced reductive conditions. By optimizing the amount of H2O2 added and the timing of the addition, the yield of extracellular water-soluble yellow pigments significantly increased and reached a maximum of 209 AU, when 10 mM H2O2 was added on the 3rd day of fermentation with M. ruber CGMCC 10910. Under HIO conditions, the ratio of NADH/NAD+ was much lower than that in the control group, and the expression levels of relative pigment biosynthesis genes were up-regulated; moreover, the activity of glucose-6-phosphate dehydrogenase (G6PDH) was increased while 6-phosphofructokinase (PFK) activity was inhibited. Oxidative conditions induced by H2O2 increased water-soluble yellow pigment accumulation via up-regulation of the expression levels of relative genes and by increasing the precursors of pigment biosynthesis through redirection of metabolic flux. In contrast, reductive conditions induced by dithiothreitol inhibited yellow pigment accumulation. This experiment provides a potential strategy for improving the production of Monascus yellow pigments.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 17%
Student > Master 3 13%
Student > Postgraduate 2 8%
Professor > Associate Professor 2 8%
Student > Doctoral Student 1 4%
Other 5 21%
Unknown 7 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 29%
Agricultural and Biological Sciences 6 25%
Chemistry 2 8%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Unknown 8 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 May 2022.
All research outputs
#7,544,865
of 23,018,998 outputs
Outputs from Microbial Cell Factories
#540
of 1,613 outputs
Outputs of similar age
#150,059
of 437,759 outputs
Outputs of similar age from Microbial Cell Factories
#7
of 39 outputs
Altmetric has tracked 23,018,998 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,613 research outputs from this source. They receive a mean Attention Score of 4.4. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 437,759 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 76% of its contemporaries.