↓ Skip to main content

Synaptic proteins in CSF as potential novel biomarkers for prognosis in prodromal Alzheimer’s disease

Overview of attention for article published in Alzheimer's Research & Therapy, January 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

news
1 news outlet
policy
1 policy source
twitter
1 tweeter

Citations

dimensions_citation
85 Dimensions

Readers on

mendeley
136 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Synaptic proteins in CSF as potential novel biomarkers for prognosis in prodromal Alzheimer’s disease
Published in
Alzheimer's Research & Therapy, January 2018
DOI 10.1186/s13195-017-0335-x
Pubmed ID
Authors

Flora H. Duits, Gunnar Brinkmalm, Charlotte E. Teunissen, Ann Brinkmalm, Philip Scheltens, Wiesje M. Van der Flier, Henrik Zetterberg, Kaj Blennow

Abstract

We investigated whether a panel of 12 potential novel biomarkers consisting of proteins involved in synapse functioning and immunity would be able to distinguish patients with Alzheimer's disease (AD) and patients with mild cognitive impairment (MCI) from control subjects. We included 40 control subjects, 40 subjects with MCI, and 40 subjects with AD from the Amsterdam Dementia Cohort who were matched for age and sex (age 65 ± 5 years, 19 [48%] women). The mean follow-up of patients with MCI was 3 years. Two or three tryptic peptides per protein were analyzed in cerebrospinal fluid using parallel reaction monitoring mass spectrometry. Corresponding stable isotope-labeled peptides were added and used as reference peptides. Multilevel generalized estimating equations (GEEs) with peptides clustered per subject and per protein (as within-subject variables) were used to assess differences between diagnostic groups. To assess differential effects of individual proteins, we included the diagnosis × protein interaction in the model. Separate GEE analyses were performed to assess differences between stable patients and patients with progressive MCI (MCI-AD). There was a main effect for diagnosis (p < 0.01) and an interaction between diagnosis and protein (p < 0.01). Analysis stratified according to protein showed higher levels in patients with MCI for most proteins, especially in patients with MCI-AD. Chromogranin A, secretogranin II, neurexin 3, and neuropentraxin 1 showed the largest effect sizes; β values ranged from 0.53 to 0.78 for patients with MCI versus control subjects or patients with AD, and from 0.67 to 0.98 for patients with MCI-AD versus patients with stable MCI. In contrast, neurosecretory protein VGF was lower in patients with AD than in patients with MCI (ß = -0.93 [SE 0.22]) and control subjects (ß = 0.46 [SE 0.19]). Our results suggest that several proteins involved in vesicular transport and synaptic stability are elevated in patients with MCI, especially in patients with MCI progressing to AD dementia. This may reflect early events in the AD pathophysiological cascade. These proteins may be valuable as disease stage or prognostic markers in an early symptomatic stage of the disease.

Twitter Demographics

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 136 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 136 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 23 17%
Student > Ph. D. Student 19 14%
Student > Master 18 13%
Student > Bachelor 13 10%
Student > Doctoral Student 8 6%
Other 16 12%
Unknown 39 29%
Readers by discipline Count As %
Neuroscience 26 19%
Biochemistry, Genetics and Molecular Biology 17 13%
Medicine and Dentistry 13 10%
Agricultural and Biological Sciences 12 9%
Psychology 4 3%
Other 13 10%
Unknown 51 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 May 2022.
All research outputs
#2,308,867
of 23,018,998 outputs
Outputs from Alzheimer's Research & Therapy
#522
of 1,243 outputs
Outputs of similar age
#60,588
of 473,646 outputs
Outputs of similar age from Alzheimer's Research & Therapy
#9
of 35 outputs
Altmetric has tracked 23,018,998 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,243 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.9. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 473,646 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 35 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.