↓ Skip to main content

Variation of poorly ventilated lung units (silent spaces) measured by electrical impedance tomography to dynamically assess recruitment

Overview of attention for article published in Critical Care, January 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
48 X users
facebook
4 Facebook pages

Readers on

mendeley
121 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Variation of poorly ventilated lung units (silent spaces) measured by electrical impedance tomography to dynamically assess recruitment
Published in
Critical Care, January 2018
DOI 10.1186/s13054-017-1931-7
Pubmed ID
Authors

Savino Spadaro, Tommaso Mauri, Stephan H. Böhm, Gaetano Scaramuzzo, Cecilia Turrini, Andreas D. Waldmann, Riccardo Ragazzi, Antonio Pesenti, Carlo Alberto Volta

Abstract

Assessing alveolar recruitment at different positive end-expiratory pressure (PEEP) levels is a major clinical and research interest because protective ventilation implies opening the lung without inducing overdistention. The pressure-volume (P-V) curve is a validated method of assessing recruitment but reflects global characteristics, and changes at the regional level may remain undetected. The aim of the present study was to compare, in intubated patients with acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS), lung recruitment measured by P-V curve analysis, with dynamic changes in poorly ventilated units of the dorsal lung (dependent silent spaces [DSSs]) assessed by electrical impedance tomography (EIT). We hypothesized that DSSs might represent a dynamic bedside measure of recruitment. We carried out a prospective interventional study of 14 patients with AHRF and ARDS admitted to the intensive care unit undergoing mechanical ventilation. Each patient underwent an incremental/decremental PEEP trial that included five consecutive phases: PEEP 5 and 10 cmH2O, recruitment maneuver + PEEP 15 cmH2O, then PEEP 10 and 5 cmH2O again. We measured, at the end of each phase, recruitment from previous PEEP using the P-V curve method, and changes in DSS were continuously monitored by EIT. PEEP changes induced alveolar recruitment as assessed by the P-V curve method and changes in the amount of DSS (p < 0.001). Recruited volume measured by the P-V curves significantly correlated with the change in DSS (rs = 0.734, p < 0.001). Regional compliance of the dependent lung increased significantly with rising PEEP (median PEEP 5 cmH2O = 11.9 [IQR 10.4-16.7] ml/cmH2O, PEEP 15 cmH2O = 19.1 [14.2-21.3] ml/cmH2O; p < 0.001), whereas regional compliance of the nondependent lung decreased from PEEP 5 cmH2O to PEEP 15 cmH2O (PEEP 5 cmH2O = 25.3 [21.3-30.4] ml/cmH2O, PEEP 15 cmH2O = 20.0 [16.6-22.8] ml/cmH2O; p <0.001). By increasing the PEEP level, the center of ventilation moved toward the dependent lung, returning to the nondependent lung during the decremental PEEP steps. The variation of DSSs dynamically measured by EIT correlates well with lung recruitment measured using the P-V curve technique. EIT might provide useful information to titrate personalized PEEP. ClinicalTrials.gov, NCT02907840 . Registered on 20 September 2016.

X Demographics

X Demographics

The data shown below were collected from the profiles of 48 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 121 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 121 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 12%
Student > Bachelor 13 11%
Other 12 10%
Student > Doctoral Student 12 10%
Professor > Associate Professor 9 7%
Other 28 23%
Unknown 33 27%
Readers by discipline Count As %
Medicine and Dentistry 53 44%
Nursing and Health Professions 7 6%
Engineering 6 5%
Biochemistry, Genetics and Molecular Biology 2 2%
Psychology 2 2%
Other 12 10%
Unknown 39 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 28. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 February 2018.
All research outputs
#1,380,949
of 25,463,091 outputs
Outputs from Critical Care
#1,190
of 6,566 outputs
Outputs of similar age
#32,173
of 449,423 outputs
Outputs of similar age from Critical Care
#47
of 94 outputs
Altmetric has tracked 25,463,091 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,566 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.8. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 449,423 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 94 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.