↓ Skip to main content

Fitting NTCP models to bladder doses and acute urinary symptoms during post-prostatectomy radiotherapy

Overview of attention for article published in Radiation Oncology, February 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fitting NTCP models to bladder doses and acute urinary symptoms during post-prostatectomy radiotherapy
Published in
Radiation Oncology, February 2018
DOI 10.1186/s13014-018-0961-x
Pubmed ID
Authors

Panayiotis Mavroidis, Kevin A. Pearlstein, John Dooley, Jasmine Sun, Srinivas Saripalli, Shiva K. Das, Andrew Z. Wang, Ronald C. Chen

Abstract

To estimate the radiobiological parameters of three popular normal tissue complication probability (NTCP) models, which describe the dose-response relations of bladder regarding different acute urinary symptoms during post-prostatectomy radiotherapy (RT). To evaluate the goodness-of-fit and the correlation of those models with those symptoms. Ninety-three consecutive patients treated from 2010 to 2015 with post-prostatectomy image-guided intensity modulated radiotherapy (IMRT) were included in this study. Patient-reported urinary symptoms were collected pre-RT and weekly during treatment using the validated Prostate Cancer Symptom Indices (PCSI). The assessed symptoms were flow, dysuria, urgency, incontinence, frequency and nocturia using a Likert scale of 1 to 4 or 5. For this analysis, an increase by ≥2 levels in a symptom at any time during treatment compared to baseline was considered clinically significant. The dose volume histograms of the bladder were calculated. The Lyman-Kutcher-Burman (LKB), Relative Seriality (RS) and Logit NTCP models were used to fit the clinical data. The fitting of the different models was assessed through the area under the receiver operating characteristic curve (AUC), Akaike information criterion (AIC) and Odds Ratio methods. For the symptoms of urinary urgency, leakage, frequency and nocturia, the derived LKB model parameters were: 1) D50 = 64.2Gy, m = 0.50, n = 1.0; 2) D50 = 95.0Gy, m = 0.45, n = 0.50; 3) D50 = 83.1Gy, m = 0.56, n = 1.00; and 4) D50 = 85.4Gy, m = 0.60, n = 1.00, respectively. The AUC values for those symptoms were 0.66, 0.58, 0.64 and 0.64, respectively. The differences in AIC between the different models were less than 2 and ranged within 0.1 and 1.3. Different dose metrics were correlated with the symptoms of urgency, incontinence, frequency and nocturia. The symptoms of urinary flow and dysuria were poorly associated with dose. The values of the parameters of three NTCP models were determined for bladder regarding four acute urinary symptoms. All the models could fit the clinical data equally well. The NTCP predictions of urgency showed the best correlation with the patient reported outcomes.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 25%
Student > Ph. D. Student 7 19%
Student > Master 6 17%
Other 3 8%
Student > Bachelor 2 6%
Other 1 3%
Unknown 8 22%
Readers by discipline Count As %
Medicine and Dentistry 6 17%
Nursing and Health Professions 4 11%
Physics and Astronomy 3 8%
Engineering 2 6%
Unspecified 1 3%
Other 3 8%
Unknown 17 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 February 2018.
All research outputs
#18,585,544
of 23,020,670 outputs
Outputs from Radiation Oncology
#1,429
of 2,073 outputs
Outputs of similar age
#329,168
of 439,370 outputs
Outputs of similar age from Radiation Oncology
#29
of 43 outputs
Altmetric has tracked 23,020,670 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,073 research outputs from this source. They receive a mean Attention Score of 2.7. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,370 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.