↓ Skip to main content

Hydrogeochemistry of seasonal variation of Urmia Salt Lake, Iran

Overview of attention for article published in Aquatic Biosystems, July 2006
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (96th percentile)

Mentioned by

twitter
23 X users
wikipedia
7 Wikipedia pages

Citations

dimensions_citation
88 Dimensions

Readers on

mendeley
69 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hydrogeochemistry of seasonal variation of Urmia Salt Lake, Iran
Published in
Aquatic Biosystems, July 2006
DOI 10.1186/1746-1448-2-9
Pubmed ID
Authors

Samad Alipour

Abstract

Urmia Lake has been designated as an international park by the United Nations. The lake occupies a 5700 km2 depression in northwestern Iran. Thirteen permanent rivers flow into the lake. Water level in the lake has been decreased 3.5 m in the last decade due to a shortage of precipitation and progressively dry climate. Geologically the lake basin is considered to be a graben of tectonic origin. Na, K, Ca, Li and Mg are the main cations with Cl, SO4, and HCO3 as the main anions. F & Br are the other main elements in the lake. A causeway crossing the lake is under construction, which may affect the lake's annual geochemistry. The main object of this project is mainly to consider the potential of K-mineral production along with ongoing salt production. Seven hundred and four samples were taken and partially analyzed for the main cations and anions. Surface water (0.5 m. depth) was analyzed for Na, K, Mg, Ca, Br and Li, and averaged 87.118 g/lit, 1.48 g/lit, 4.82 g/lit, 4.54 g/lit, 1.19 ppm and 12.7 ppm respectively for the western half of the lake. Sodium ranged between 84 to 91.2 g/lit, and showed higher concentrations in the south than in the north. This unexpected result may be caused by shallower depth in the south and a higher net evaporation effect. Calcium ranged between 4.2 to 5 g/lit, apparently slightly higher in the north. K is higher in the south, possibly due to rivers entering from south that may carry slightly higher K in solution. In the middle-range samples (0.5-5 m.), K averaged 1.43 g/lit and ranged from 1.40 to 1.46 g/lit. At this intermediate depth the distribution of K is clearly higher to the south of the causeway that is currently under construction. It is not clear whether this increase is the effect of the causeway or the effect of the salty Aji-Chay River to the east, and the Khoy salt domes to the north of the lake. At depth (5 m-10 m), K averaged 1.48 g/lit and ranged from 1.4 to 1.49 g/lit, differing only in the second decimal from the average of the middle and surface samples. Ignoring the small difference between the averages of the three sample depths, the distribution of K is highly homogeneous in the lake water due to the mixing process. Therefore causeway construction has not yet strongly affected K distribution, or it may be at the starting point. Magnesium concentration ranged from 4.6 to 5-g/lit, and was elevated in the south. This differs somewhat compared to calcium. Lithium, with an average of 12-13 ppm, is slightly higher in the south, and has not shown any significant variation in all three seasons. Iodine was below the detection limit in the lake. Urmia Lake, geochemically, is highly uniform both to the south and north of the causeway, in both the surface and deep brines. K and Mg, which average 1.48 and 6.6 g/lit in order, could be elements worth production in addition to the NaCl currently being produced from the lake. Br, F, Li and B in the limit of <50 ppm don't look to be in the economical range.

X Demographics

X Demographics

The data shown below were collected from the profiles of 23 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Australia 1 1%
Unknown 67 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 26%
Student > Master 14 20%
Researcher 12 17%
Student > Bachelor 3 4%
Librarian 2 3%
Other 8 12%
Unknown 12 17%
Readers by discipline Count As %
Earth and Planetary Sciences 14 20%
Engineering 12 17%
Agricultural and Biological Sciences 11 16%
Environmental Science 9 13%
Arts and Humanities 2 3%
Other 9 13%
Unknown 12 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 23. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 January 2024.
All research outputs
#1,662,259
of 25,832,559 outputs
Outputs from Aquatic Biosystems
#6
of 74 outputs
Outputs of similar age
#3,059
of 92,949 outputs
Outputs of similar age from Aquatic Biosystems
#1
of 1 outputs
Altmetric has tracked 25,832,559 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 74 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.5. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 92,949 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them