↓ Skip to main content

The spatial and temporal scales of local dengue virus transmission in natural settings: a retrospective analysis

Overview of attention for article published in Parasites & Vectors, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
101 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The spatial and temporal scales of local dengue virus transmission in natural settings: a retrospective analysis
Published in
Parasites & Vectors, February 2018
DOI 10.1186/s13071-018-2662-6
Pubmed ID
Authors

Luigi Sedda, Ana Paula Pessoa Vilela, Eric Roberto Guimarães Rocha Aguiar, Caio Henrique Pessoa Gaspar, André Nicolau Aquime Gonçalves, Roenick Proveti Olmo, Ana Teresa Saraiva Silva, Lízia de Cássia da Silveira, Álvaro Eduardo Eiras, Betânia Paiva Drumond, Erna Geessien Kroon, João Trindade Marques

Abstract

Dengue is a vector-borne disease caused by the dengue virus (DENV). Despite the crucial role of Aedes mosquitoes in DENV transmission, pure vector indices poorly correlate with human infections. Therefore there is great need for a better understanding of the spatial and temporal scales of DENV transmission between mosquitoes and humans. Here, we have systematically monitored the circulation of DENV in individual Aedes spp. mosquitoes and human patients from Caratinga, a dengue endemic city in the state of Minas Gerais, in Southeast Brazil. From these data, we have developed a novel stochastic point process pattern algorithm to identify the spatial and temporal association between DENV infected mosquitoes and human patients. The algorithm comprises of: (i) parameterization of the variogram for the incidence of each DENV serotype in mosquitoes; (ii) identification of the spatial and temporal ranges and variances of DENV incidence in mosquitoes in the proximity of humans infected with dengue; and (iii) analysis of the association between a set of environmental variables and DENV incidence in mosquitoes in the proximity of humans infected with dengue using a spatio-temporal additive, geostatistical linear model. DENV serotypes 1 and 3 were the most common virus serotypes detected in both mosquitoes and humans. Using the data on each virus serotype separately, our spatio-temporal analyses indicated that infected humans were located in areas with the highest DENV incidence in mosquitoes, when incidence is calculated within 2.5-3 km and 50 days (credible interval 30-70 days) before onset of symptoms in humans. These measurements are in agreement with expected distances covered by mosquitoes and humans and the time for virus incubation. Finally, DENV incidence in mosquitoes found in the vicinity of infected humans correlated well with the low wind speed, higher air temperature and northerly winds that were more likely to favor vector survival and dispersal in Caratinga. We have proposed a new way of modeling bivariate point pattern on the transmission of arthropod-borne pathogens between vector and host when the location of infection in the latter is known. This strategy avoids some of the strong and unrealistic assumptions made by other point-process models. Regarding virus transmission in Caratinga, our model showed a strong and significant association between high DENV incidence in mosquitoes and the onset of symptoms in humans at specific spatial and temporal windows. Together, our results indicate that vector surveillance must be a priority for dengue control. Nevertheless, localized vector control at distances lower than 2.5 km around premises with infected vectors in densely populated areas are not likely to be effective.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 101 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 101 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 14 14%
Researcher 13 13%
Student > Bachelor 11 11%
Student > Ph. D. Student 10 10%
Other 6 6%
Other 16 16%
Unknown 31 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 20%
Biochemistry, Genetics and Molecular Biology 12 12%
Medicine and Dentistry 10 10%
Environmental Science 6 6%
Immunology and Microbiology 5 5%
Other 13 13%
Unknown 35 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 January 2019.
All research outputs
#15,490,822
of 23,020,670 outputs
Outputs from Parasites & Vectors
#3,413
of 5,506 outputs
Outputs of similar age
#269,142
of 439,370 outputs
Outputs of similar age from Parasites & Vectors
#101
of 165 outputs
Altmetric has tracked 23,020,670 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,506 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,370 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 165 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.