↓ Skip to main content

Phylogenomics of a rapid radiation: the Australian rainbow skinks

Overview of attention for article published in BMC Ecology and Evolution, February 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (75th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
12 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
46 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Phylogenomics of a rapid radiation: the Australian rainbow skinks
Published in
BMC Ecology and Evolution, February 2018
DOI 10.1186/s12862-018-1130-4
Pubmed ID
Authors

Jason G. Bragg, Sally Potter, Ana C. Afonso Silva, Conrad J. Hoskin, Benjamin Y. H. Bai, Craig Moritz

Abstract

The application of target capture with next-generation sequencing now enables phylogenomic analyses of rapidly radiating clades of species. But such analyses are complicated by extensive incomplete lineage sorting, demanding the use of methods that consider this process explicitly, such as the multispecies coalescent (MSC) model. However, the MSC makes strong assumptions about divergence history and population structure, and when using the full Bayesian implementation, current computational limits mean that relatively few loci and samples can be analysed for even modest sized radiations. We explore these issues through analyses of an extensive (> 1000 loci) dataset for the Australian rainbow skinks. This group consists of 3 genera and 41 described species, which likely diversified rapidly in Australia during the mid-late Miocene to occupy rainforest, woodland, and rocky habitats with corresponding diversity of morphology and breeding colouration. Previous phylogenetic analyses of this group have revealed short inter-nodes and high discordance among loci, limiting the resolution of inferred trees. A further complication is that many species have deep phylogeographic structure - this poses the question of how to sample individuals within species for analyses using the MSC. Phylogenies obtained using concatenation and summary coalescent species tree approaches to the full dataset are well resolved with generally consistent topology, including for previously intractable relationships near the base of the clade. As expected, branch lengths at the tips are substantially overestimated using concatenation. Comparisons of different strategies for sampling haplotypes for full Bayesian MSC analyses (for one clade and using smaller sets of loci) revealed, unexpectedly, that combining haplotypes across divergent phylogeographic lineages yielded consistent species trees. This study of more than 1000 loci provides a strongly-supported estimate of the phylogeny of the Australian rainbow skinks, which will inform future research on the evolution and taxonomy of this group. Our analyses suggest that species tree estimation with the MSC can be quite robust to violation of the assumption that the individuals representing a taxon are sampled from a panmictic population.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 17%
Professor > Associate Professor 7 15%
Student > Bachelor 6 13%
Researcher 6 13%
Student > Ph. D. Student 4 9%
Other 7 15%
Unknown 8 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 50%
Biochemistry, Genetics and Molecular Biology 6 13%
Engineering 3 7%
Environmental Science 2 4%
Computer Science 1 2%
Other 2 4%
Unknown 9 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 May 2018.
All research outputs
#5,391,140
of 25,382,440 outputs
Outputs from BMC Ecology and Evolution
#1,300
of 3,714 outputs
Outputs of similar age
#110,156
of 445,948 outputs
Outputs of similar age from BMC Ecology and Evolution
#19
of 48 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 78th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 445,948 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.