↓ Skip to main content

Modeling the therapeutic efficacy of NFκB synthetic decoy oligodeoxynucleotides (ODNs)

Overview of attention for article published in BMC Systems Biology, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
1 X user
googleplus
1 Google+ user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Modeling the therapeutic efficacy of NFκB synthetic decoy oligodeoxynucleotides (ODNs)
Published in
BMC Systems Biology, January 2018
DOI 10.1186/s12918-018-0525-6
Pubmed ID
Authors

Zhipeng Wang, Davit A. Potoyan, Peter G. Wolynes

Abstract

Transfection of NF κB synthetic decoy Oligodeoxynucleotides (ODNs) has been proposed as a promising therapeutic strategy for a variety of diseases arising from constitutive activation of the eukaryotic transcription factor NF κB. The decoy approach faces some limitations under physiological conditions notably nuclease-induced degradation. In this work, we show how a systems pharmacology model of NF κB regulatory networks displaying oscillatory temporal dynamics, can be used to predict quantitatively the dependence of therapeutic efficacy of NF κB synthetic decoy ODNs on dose, unbinding kinetic rates and nuclease-induced degradation rates. Both deterministic mass action simulations and stochastic simulations of the systems biology model show that the therapeutic efficacy of synthetic decoy ODNs is inversely correlated with unbinding kinetic rates, nuclease-induced degradation rates and molecular stripping rates, but is positively correlated with dose. We show that the temporal coherence of the stochastic dynamics of NF κB regulatory networks is most sensitive to adding NF κB synthetic decoy ODNs having unbinding time-scales that are in-resonance with the time-scale of the limit cycle of the network. The pharmacokinetics/pharmacodynamics (PK/PD) predicted by the systems-level model should provide quantitative guidance for in-depth translational research of optimizing the thermodynamics/kinetic properties of synthetic decoy ODNs.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 50%
Student > Ph. D. Student 3 30%
Professor 1 10%
Student > Doctoral Student 1 10%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 20%
Pharmacology, Toxicology and Pharmaceutical Science 1 10%
Mathematics 1 10%
Agricultural and Biological Sciences 1 10%
Computer Science 1 10%
Other 2 20%
Unknown 2 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 April 2018.
All research outputs
#13,579,722
of 23,023,224 outputs
Outputs from BMC Systems Biology
#478
of 1,144 outputs
Outputs of similar age
#219,872
of 440,331 outputs
Outputs of similar age from BMC Systems Biology
#10
of 22 outputs
Altmetric has tracked 23,023,224 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,144 research outputs from this source. They receive a mean Attention Score of 3.6. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 440,331 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.