↓ Skip to main content

The medaka dhc2 mutant reveals conserved and distinct mechanisms of Hedgehog signaling in teleosts

Overview of attention for article published in BMC Developmental Biology, February 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The medaka dhc2 mutant reveals conserved and distinct mechanisms of Hedgehog signaling in teleosts
Published in
BMC Developmental Biology, February 2015
DOI 10.1186/s12861-015-0057-x
Pubmed ID
Authors

Takayoshi Yamamoto, Tatsuya Tsukahara, Tadashi Ishiguro, Haruo Hagiwara, Masanori Taira, Hiroyuki Takeda

Abstract

BackgroundPrimary cilia are essential for Hedgehog (Hh) signal transduction in vertebrates. Although the core components of the Hh pathway are highly conserved, the dependency on cilia in Hh signaling is considered to be lower in fish than in mice, suggesting the presence of species-specific mechanisms for Hh signal transduction.ResultsTo precisely understand the role of cilia in Hh signaling in fish and explore the evolution of Hh signaling, we have generated a maternal-zygotic medaka (Oryzias latipes) mutant that lacks cytoplasmic dynein heavy chain 2 (dhc2; MZdhc2), a component required for retrograde intraflagellar transport. We found that MZdhc2 exhibited the shortened cilia and partial defects in Hh signaling, although the Hh defects were milder than zebrafish mutants which completely lack cilia. This result suggests that Hh activity in fish depends on the length of cilium. However, the activity of Hh signaling in MZdhc2 appeared to be higher than that in mouse Dnchc2 mutants, suggesting a lower requirement for cilia in Hh signaling in fish. We confirmed that Ptch1 receptor is exclusively localized on the cilium in fish as in mammals. Subsequent analyses revealed that Fused, an essential mediator for Hh signaling in Drosophila and fish but not in mammals, augments the activity of Hh signaling in fish as a transcriptional target of Hh signaling.ConclusionsCiliary requirement for Hh signaling in fish is lower than that in mammals, possibly due to fused-mediated positive feedback in Hh signaling. The finding of this fish-specific augmentation provides a novel insight into the evolution of Hh signaling.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 22%
Professor > Associate Professor 3 13%
Student > Ph. D. Student 3 13%
Student > Doctoral Student 2 9%
Professor 2 9%
Other 3 13%
Unknown 5 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 39%
Agricultural and Biological Sciences 6 26%
Arts and Humanities 1 4%
Medicine and Dentistry 1 4%
Unknown 6 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 January 2016.
All research outputs
#14,718,998
of 23,577,654 outputs
Outputs from BMC Developmental Biology
#232
of 370 outputs
Outputs of similar age
#191,540
of 355,762 outputs
Outputs of similar age from BMC Developmental Biology
#12
of 15 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 370 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 355,762 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.