↓ Skip to main content

Male-specific hepatitis B virus large surface protein variant W4P potentiates tumorigenicity and induces gender disparity

Overview of attention for article published in Molecular Cancer, February 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Male-specific hepatitis B virus large surface protein variant W4P potentiates tumorigenicity and induces gender disparity
Published in
Molecular Cancer, February 2015
DOI 10.1186/s12943-015-0303-7
Pubmed ID
Authors

Seoung-Ae Lee, Hong Kim, You-Sub Won, Seung-Hyeok Seok, YiRang Na, Han-Bo Shin, Kyung-Soo Inn, Bum-Joon Kim

Abstract

BackgroundThe underlying mechanisms of carcinogenesis and gender disparity in hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC) remain unclear. Recently, we reported a novel HCC-related W4P/R mutation in the large surface protein (LHB) of HBV genotype C, which was found exclusively in male HCC patients.MethodsLHB sequences from a carrier (wild type; WT) and W4P variant LHB sequence from an HCC patient were cloned and used to generate NIH3T3 and Huh7 cell lines. Cell proliferation and in vitro tumorigenicity were assessed by cell growth and transformation assays. Male and female nude mice were injected with the cells to determine in vivo tumorigenicity. To confirm the effect of estrogen in W4P-mediated tumorigenicity, male mice were injected with estrogen and challenged with W4P-expressing cells. The serum levels of different cytokines from the mouse model and patients were analyzed by ELISA. A critical role of interleukin (IL)-6 signaling in W4P-mediated tumorigenicity was tested by inhibition of Jak2.ResultsAlthough both WT and W4P variant LHBs enhanced cell proliferation by regulating the cell cycle and facilitated cell colony formation, the W4P variant demonstrated significantly higher activity. NIH3T3 cells expressing variant LHB, but not the WT, induced tumor in a nude mouse model. Tumor masses produced by variant LHB were significantly larger in male than female mice, and significantly reduced by estrogen. IL-6, but not tumor necrosis factor-¿, was elevated in male mice harboring W4P-induced tumor, and was reduced by estrogen. IL-6 levels of HCC patients with the W4P variant were significantly higher than those of patients with WT LHB. W4P LHB induced higher production of IL-6 than WT LHB in cell lines, and the level was reduced by estrogen. The ability to reduce cell proliferation and colony formation of W4P LHB was hampered by inhibition of IL-6 signaling.ConclusionsThis study suggests that the W4P mutation during the natural course of chronic hepatitis B infection may contribute to HCC development, particularly in male patients, in an IL-6-dependent manner.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 4%
Unknown 24 96%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 16%
Other 3 12%
Researcher 3 12%
Lecturer 2 8%
Student > Master 2 8%
Other 1 4%
Unknown 10 40%
Readers by discipline Count As %
Medicine and Dentistry 8 32%
Agricultural and Biological Sciences 3 12%
Biochemistry, Genetics and Molecular Biology 3 12%
Unknown 11 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 February 2015.
All research outputs
#20,256,697
of 22,786,087 outputs
Outputs from Molecular Cancer
#1,478
of 1,719 outputs
Outputs of similar age
#296,445
of 352,352 outputs
Outputs of similar age from Molecular Cancer
#38
of 49 outputs
Altmetric has tracked 22,786,087 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,719 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,352 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 49 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.