↓ Skip to main content

Population structure and genomic inbreeding in nine Swiss dairy cattle populations

Overview of attention for article published in Genetics Selection Evolution, November 2017
Altmetric Badge

Citations

dimensions_citation
54 Dimensions

Readers on

mendeley
87 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Population structure and genomic inbreeding in nine Swiss dairy cattle populations
Published in
Genetics Selection Evolution, November 2017
DOI 10.1186/s12711-017-0358-6
Pubmed ID
Authors

Heidi Signer-Hasler, Alexander Burren, Markus Neuditschko, Mirjam Frischknecht, Dorian Garrick, Christian Stricker, Birgit Gredler, Beat Bapst, Christine Flury

Abstract

Domestication, breed formation and intensive selection have resulted in divergent cattle breeds that likely exhibit their own genomic signatures. In this study, we used genotypes from 27,612 autosomal single nucleotide polymorphisms to characterize population structure based on 9214 sires representing nine Swiss dairy cattle populations: Brown Swiss (BS), Braunvieh (BV), Original Braunvieh (OB), Holstein (HO), Red Holstein (RH), Swiss Fleckvieh (SF), Simmental (SI), Eringer (ER) and Evolèner (EV). Genomic inbreeding (F ROH) and signatures of selection were determined by calculating runs of homozygosity (ROH). The results build the basis for a better understanding of the genetic development of Swiss dairy cattle populations and highlight differences between the original populations (i.e. OB, SI, ER and EV) and those that have become more popular in Switzerland as currently reflected by their larger populations (i.e. BS, BV, HO, RH and SF). The levels of genetic diversity were highest and lowest in the SF and BS breeds, respectively. Based on F ST values, we conclude that, among all pairwise comparisons, BS and HO (0.156) differ more than the other pairs of populations. The original Swiss cattle populations OB, SI, ER, and EV are clearly genetically separated from the Swiss cattle populations that are now more common and represented by larger numbers of cows. Mean levels of F ROH ranged from 0.027 (ER) to 0.091 (BS). Three of the original Swiss cattle populations, ER (F ROH: 0.027), OB (F ROH: 0.029), and SI (F ROH: 0.039), showed low levels of genomic inbreeding, whereas it was much higher in EV (F ROH: 0.074). Private signatures of selection for the original Swiss cattle populations are reported for BTA4, 5, 11 and 26. The low levels of genomic inbreeding observed in the original Swiss cattle populations ER, OB and SI compared to the other breeds are explained by a lesser use of artificial insemination and greater use of natural service. Natural service results in more sires having progeny at each generation and thus this breeding practice is likely the major reason for the remarkable levels of genetic diversity retained within these populations. The fact that the EV population is regionally restricted and its small census size of herd-book cows explain its high level of genomic inbreeding.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 87 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 87 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 14 16%
Student > Ph. D. Student 14 16%
Researcher 9 10%
Student > Doctoral Student 8 9%
Student > Bachelor 7 8%
Other 15 17%
Unknown 20 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 34 39%
Biochemistry, Genetics and Molecular Biology 11 13%
Veterinary Science and Veterinary Medicine 6 7%
Medicine and Dentistry 5 6%
Nursing and Health Professions 1 1%
Other 2 2%
Unknown 28 32%