↓ Skip to main content

Whole genome duplications have provided teleosts with many roads to peptide loaded MHC class I molecules

Overview of attention for article published in BMC Ecology and Evolution, February 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Whole genome duplications have provided teleosts with many roads to peptide loaded MHC class I molecules
Published in
BMC Ecology and Evolution, February 2018
DOI 10.1186/s12862-018-1138-9
Pubmed ID
Authors

Unni Grimholt

Abstract

In sharks, chickens, rats, frogs, medaka and zebrafish there is haplotypic variation in MHC class I and closely linked genes involved in antigen processing, peptide translocation and peptide loading. At least in chicken, such MHCIa haplotypes of MHCIa, TAP2 and Tapasin are shown to influence the repertoire of pathogen epitopes being presented to CD8+ T-cells with subsequent effect on cell-mediated immune responses. Examining MHCI haplotype variation in Atlantic salmon using transcriptome and genome resources we found little evidence for polymorphism in antigen processing genes closely linked to the classical MHCIa genes. Looking at other genes involved in MHCI assembly and antigen processing we found retention of functional gene duplicates originating from the second vertebrate genome duplication event providing cyprinids, salmonids, and neoteleosts with the potential of several different peptide-loading complexes. One of these gene duplications has also been retained in the tetrapod lineage with orthologs in frogs, birds and opossum. We postulate that the unique salmonid whole genome duplication (SGD) is responsible for eliminating haplotypic content in the paralog MHCIa regions possibly due to frequent recombination and reorganization events at early stages after the SGD. In return, multiple rounds of whole genome duplications has provided Atlantic salmon, other teleosts and even lower vertebrates with alternative peptide loading complexes. How this affects antigen presentation remains to be established.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 20%
Student > Master 4 11%
Student > Bachelor 4 11%
Student > Ph. D. Student 4 11%
Other 2 6%
Other 6 17%
Unknown 8 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 34%
Agricultural and Biological Sciences 9 26%
Immunology and Microbiology 4 11%
Unspecified 1 3%
Engineering 1 3%
Other 0 0%
Unknown 8 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 February 2018.
All research outputs
#19,951,180
of 25,382,440 outputs
Outputs from BMC Ecology and Evolution
#3,171
of 3,714 outputs
Outputs of similar age
#253,049
of 343,867 outputs
Outputs of similar age from BMC Ecology and Evolution
#44
of 51 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,867 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.