↓ Skip to main content

Objective measurement of head movement differences in children with and without autism spectrum disorder

Overview of attention for article published in Molecular Autism, February 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
19 X users

Readers on

mendeley
189 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Objective measurement of head movement differences in children with and without autism spectrum disorder
Published in
Molecular Autism, February 2018
DOI 10.1186/s13229-018-0198-4
Pubmed ID
Authors

Katherine B. Martin, Zakia Hammal, Gang Ren, Jeffrey F. Cohn, Justine Cassell, Mitsunori Ogihara, Jennifer C. Britton, Anibal Gutierrez, Daniel S. Messinger

Abstract

Deficits in motor movement in children with autism spectrum disorder (ASD) have typically been characterized qualitatively by human observers. Although clinicians have noted the importance of atypical head positioning (e.g. social peering and repetitive head banging) when diagnosing children with ASD, a quantitative understanding of head movement in ASD is lacking. Here, we conduct a quantitative comparison of head movement dynamics in children with and without ASD using automated, person-independent computer-vision based head tracking (Zface). Because children with ASD often exhibit preferential attention to nonsocial versus social stimuli, we investigated whether children with and without ASD differed in their head movement dynamics depending on stimulus sociality. The current study examined differences in head movement dynamics in children with (n = 21) and without ASD (n = 21). Children were video-recorded while watching a 16-min video of social and nonsocial stimuli. Three dimensions of rigid head movement-pitch (head nods), yaw (head turns), and roll (lateral head inclinations)-were tracked using Zface. The root mean square of pitch, yaw, and roll was calculated to index the magnitude of head angular displacement (quantity of head movement) and angular velocity (speed). Compared with children without ASD, children with ASD exhibited greater yaw displacement, indicating greater head turning, and greater velocity of yaw and roll, indicating faster head turning and inclination. Follow-up analyses indicated that differences in head movement dynamics were specific to the social rather than the nonsocial stimulus condition. Head movement dynamics (displacement and velocity) were greater in children with ASD than in children without ASD, providing a quantitative foundation for previous clinical reports. Head movement differences were evident in lateral (yaw and roll) but not vertical (pitch) movement and were specific to a social rather than nonsocial condition. When presented with social stimuli, children with ASD had higher levels of head movement and moved their heads more quickly than children without ASD. Children with ASD may use head movement to modulate their perception of social scenes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 19 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 189 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 189 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 25 13%
Student > Ph. D. Student 20 11%
Student > Bachelor 20 11%
Researcher 18 10%
Student > Doctoral Student 11 6%
Other 30 16%
Unknown 65 34%
Readers by discipline Count As %
Psychology 34 18%
Medicine and Dentistry 18 10%
Nursing and Health Professions 14 7%
Neuroscience 11 6%
Computer Science 10 5%
Other 25 13%
Unknown 77 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 April 2020.
All research outputs
#2,696,094
of 23,313,051 outputs
Outputs from Molecular Autism
#258
of 678 outputs
Outputs of similar age
#57,917
of 330,792 outputs
Outputs of similar age from Molecular Autism
#11
of 23 outputs
Altmetric has tracked 23,313,051 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 678 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 28.2. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,792 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.