↓ Skip to main content

ISL1 overexpression enhances the survival of transplanted human mesenchymal stem cells in a murine myocardial infarction model

Overview of attention for article published in Stem Cell Research & Therapy, February 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

news
1 news outlet

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
ISL1 overexpression enhances the survival of transplanted human mesenchymal stem cells in a murine myocardial infarction model
Published in
Stem Cell Research & Therapy, February 2018
DOI 10.1186/s13287-018-0803-7
Pubmed ID
Authors

Qiuling Xiang, Yan Liao, Hua Chao, Weijun Huang, Jia Liu, Haixuan Chen, Dongxi Hong, Zhengwei Zou, Andy Peng Xiang, Weiqiang Li

Abstract

The LIM-homeobox transcription factor islet-1 (ISL1) has been proposed as a marker for cardiovascular progenitor cells. This study investigated whether forced expression of ISL1 in human mesenchymal stem cells (hMSCs) improves myocardial infarction (MI) treatment outcomes. The lentiviral vector containing the human elongation factor 1α promoter, which drives the expression of ISL1 (EF1α-ISL1), was constructed using the Multisite Gateway System and used to transduce hMSCs. Flow cytometry, immunofluorescence, Western blotting, TUNEL assay, and RNA sequencing were performed to evaluate the function of ISL1-overexpressing hMSCs (ISL1-hMSCs). The in vivo results showed that transplantation of ISL1-hMSCs improved cardiac function in a rat model of MI. Left ventricle ejection fraction and fractional shortening were greater in post-MI hearts after 4 weeks of treatment with ISL1-hMSCs compared with control hMSCs or phosphate-buffered saline. We also found that ISL1 overexpression increased angiogenesis and decreased apoptosis and inflammation. The greater potential of ISL1-hMSCs may be attributable to an increased number of surviving cells after transplantation. Conditioned medium from ISL1-hMSCs decreased the apoptotic effect of H2O2on the cardiomyocyte cell line H9c2. To clarify the molecular basis of this finding, we employed RNA sequencing to compare the apoptotic-related gene expression profiles of control hMSCs and ISL1-hMSCs. The results showed that insulin-like growth factor binding protein 3 (IGFBP3) was the only gene in ISL1-hMSCs with a RPKM value higher than 100 and that the difference fold-change between ISL1-hMSCs and control hMSCs was greater than 3, suggesting that IGFBP3 might play an important role in the anti-apoptosis effect of ISL1-hMSCs through paracrine effects. Furthermore, the expression of IGFBP3 in the conditioned medium from ISL1-hMSCs was almost fourfold greater than that in conditioned medium from control hMSCs. Moreover, the IGFBP3 neutralization antibody reversed the apoptotic effect of ISL1-hMSCs-CM. These results suggest that overexpression of ISL1 in hMSCs promotes cell survival in a model of MI and enhances their paracrine function to protect cardiomyocytes, which may be mediated through IGFBP3. ISL1 overexpression in hMSCs may represent a novel strategy for enhancing the effectiveness of stem cell therapy after MI.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 17%
Student > Ph. D. Student 4 17%
Student > Postgraduate 2 8%
Professor 1 4%
Unspecified 1 4%
Other 2 8%
Unknown 10 42%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 21%
Medicine and Dentistry 2 8%
Materials Science 2 8%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Immunology and Microbiology 1 4%
Other 3 13%
Unknown 10 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 March 2018.
All research outputs
#4,225,497
of 23,025,074 outputs
Outputs from Stem Cell Research & Therapy
#415
of 2,429 outputs
Outputs of similar age
#83,926
of 330,211 outputs
Outputs of similar age from Stem Cell Research & Therapy
#12
of 66 outputs
Altmetric has tracked 23,025,074 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,429 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,211 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 66 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.