↓ Skip to main content

An information-theoretic approach to the modeling and analysis of whole-genome bisulfite sequencing data

Overview of attention for article published in BMC Bioinformatics, March 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • Good Attention Score compared to outputs of the same age and source (76th percentile)

Mentioned by

twitter
11 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
74 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An information-theoretic approach to the modeling and analysis of whole-genome bisulfite sequencing data
Published in
BMC Bioinformatics, March 2018
DOI 10.1186/s12859-018-2086-5
Pubmed ID
Authors

Garrett Jenkinson, Jordi Abante, Andrew P. Feinberg, John Goutsias

Abstract

DNA methylation is a stable form of epigenetic memory used by cells to control gene expression. Whole genome bisulfite sequencing (WGBS) has emerged as a gold-standard experimental technique for studying DNA methylation by producing high resolution genome-wide methylation profiles. Statistical modeling and analysis is employed to computationally extract and quantify information from these profiles in an effort to identify regions of the genome that demonstrate crucial or aberrant epigenetic behavior. However, the performance of most currently available methods for methylation analysis is hampered by their inability to directly account for statistical dependencies between neighboring methylation sites, thus ignoring significant information available in WGBS reads. We present a powerful information-theoretic approach for genome-wide modeling and analysis of WGBS data based on the 1D Ising model of statistical physics. This approach takes into account correlations in methylation by utilizing a joint probability model that encapsulates all information available in WGBS methylation reads and produces accurate results even when applied on single WGBS samples with low coverage. Using the Shannon entropy, our approach provides a rigorous quantification of methylation stochasticity in individual WGBS samples genome-wide. Furthermore, it utilizes the Jensen-Shannon distance to evaluate differences in methylation distributions between a test and a reference sample. Differential performance assessment using simulated and real human lung normal/cancer data demonstrate a clear superiority of our approach over DSS, a recently proposed method for WGBS data analysis. Critically, these results demonstrate that marginal methods become statistically invalid when correlations are present in the data. This contribution demonstrates clear benefits and the necessity of modeling joint probability distributions of methylation using the 1D Ising model of statistical physics and of quantifying methylation stochasticity using concepts from information theory. By employing this methodology, substantial improvement of DNA methylation analysis can be achieved by effectively taking into account the massive amount of statistical information available in WGBS data, which is largely ignored by existing methods.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 74 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 74 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 16%
Researcher 12 16%
Student > Bachelor 9 12%
Student > Master 9 12%
Student > Doctoral Student 5 7%
Other 10 14%
Unknown 17 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 19 26%
Agricultural and Biological Sciences 9 12%
Mathematics 7 9%
Medicine and Dentistry 4 5%
Computer Science 3 4%
Other 11 15%
Unknown 21 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 August 2018.
All research outputs
#3,881,433
of 23,344,526 outputs
Outputs from BMC Bioinformatics
#1,469
of 7,387 outputs
Outputs of similar age
#77,168
of 333,421 outputs
Outputs of similar age from BMC Bioinformatics
#26
of 113 outputs
Altmetric has tracked 23,344,526 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,387 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,421 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 113 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 76% of its contemporaries.