↓ Skip to main content

Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, March 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses
Published in
Biotechnology for Biofuels and Bioproducts, March 2018
DOI 10.1186/s13068-018-1060-9
Pubmed ID
Authors

Xing Qin, Xiaoyun Su, Huiying Luo, Rui Ma, Bin Yao, Fuying Ma

Abstract

Irpex lacteus is one of the most potent white rot fungi for biological pretreatment of lignocellulose for second biofuel production. To elucidate the underlying molecular mechanism involved in lignocellulose deconstruction, genomic and transcriptomic analyses were carried out for I. lacteus CD2 grown in submerged fermentation using ball-milled corn stover as the carbon source. Irpex lacteus CD2 efficiently decomposed 74.9% lignin, 86.3% cellulose, and 83.5% hemicellulose in corn stover within 9 days. Manganese peroxidases were rapidly induced, followed by accumulation of cellulase and hemicellulase. Genomic analysis revealed that I. lacteus CD2 possessed a complete set of lignocellulose-degrading enzyme system composed mainly of class II peroxidases, dye-decolorizing peroxidases, auxiliary enzymes, and 182 glycoside hydrolases. Comparative transcriptomic analysis substantiated the notion of a selection mode of degradation. These analyses also suggested that free radicals, derived either from MnP-organic acid interplay or from Fenton reaction involving Fe2+ and H2O2, could play an important role in lignocellulose degradation. The selective strategy employed by I. lacteus CD2, in combination with low extracellular glycosidases cleaving plant cell wall polysaccharides into fermentable sugars, may account for high pretreatment efficiency of I. lacteus. Our study also hints the importance of free radicals for future designing of novel, robust lignocellulose-degrading enzyme cocktails.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 53 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 21%
Researcher 7 13%
Student > Master 4 8%
Student > Bachelor 4 8%
Student > Postgraduate 3 6%
Other 10 19%
Unknown 14 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 32%
Biochemistry, Genetics and Molecular Biology 9 17%
Engineering 3 6%
Unspecified 2 4%
Environmental Science 2 4%
Other 5 9%
Unknown 15 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 March 2018.
All research outputs
#17,292,294
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#996
of 1,578 outputs
Outputs of similar age
#224,003
of 346,135 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#36
of 54 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 346,135 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.