↓ Skip to main content

Cancer cell metabolic plasticity allows resistance to NAMPT inhibition but invariably induces dependence on LDHA

Overview of attention for article published in Cancer & Metabolism, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cancer cell metabolic plasticity allows resistance to NAMPT inhibition but invariably induces dependence on LDHA
Published in
Cancer & Metabolism, March 2018
DOI 10.1186/s40170-018-0174-7
Pubmed ID
Authors

Natthakan Thongon, Chiara Zucal, Vito Giuseppe D’Agostino, Toma Tebaldi, Silvia Ravera, Federica Zamporlini, Francesco Piacente, Ruxanda Moschoi, Nadia Raffaelli, Alessandro Quattrone, Alessio Nencioni, Jean-Francois Peyron, Alessandro Provenzani

Abstract

Inhibitors of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in NAD+biosynthesis from nicotinamide, exhibit anticancer effects in preclinical models. However, continuous exposure to NAMPT inhibitors, such as FK866, can induce acquired resistance. We developed FK866-resistant CCRF-CEM (T cell acute lymphoblastic leukemia) and MDA MB231 (breast cancer) models, and by exploiting an integrated approach based on genetic, biochemical, and genome wide analyses, we annotated the drug resistance mechanisms. Acquired resistance to FK866 was independent of NAMPT mutations but rather was based on a shift towards a glycolytic metabolism and on lactate dehydrogenase A (LDHA) activity. In addition, resistant CCRF-CEM cells, which exhibit high quinolinate phosphoribosyltransferase (QPRT) activity, also exploited amino acid catabolism as an alternative source for NAD+production, becoming addicted to tryptophan and glutamine and sensitive to treatment with the amino acid transport inhibitor JPH203 and with l-asparaginase, which affects glutamine exploitation. Vice versa, in line with their low QPRT expression, FK866-resistant MDA MB231 did not rely on amino acids for their resistance phenotype. Our study identifies novel mechanisms of resistance to NAMPT inhibition, which may be useful to design more rational strategies for targeting cancer metabolism.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 18%
Student > Master 7 13%
Student > Ph. D. Student 6 11%
Student > Postgraduate 3 5%
Professor 2 4%
Other 5 9%
Unknown 22 40%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 22%
Agricultural and Biological Sciences 9 16%
Medicine and Dentistry 4 7%
Chemistry 3 5%
Immunology and Microbiology 2 4%
Other 2 4%
Unknown 23 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 March 2018.
All research outputs
#14,969,772
of 23,026,672 outputs
Outputs from Cancer & Metabolism
#130
of 206 outputs
Outputs of similar age
#201,290
of 332,633 outputs
Outputs of similar age from Cancer & Metabolism
#3
of 5 outputs
Altmetric has tracked 23,026,672 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 206 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,633 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.