↓ Skip to main content

High Mobility Group Box Protein 1 (HMGB1)-Partner Molecule Complexes Enhance Cytokine Production by Signaling Through the Partner Molecule Receptor

Overview of attention for article published in Molecular Medicine, November 2011
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

patent
6 patents
wikipedia
2 Wikipedia pages

Citations

dimensions_citation
88 Dimensions

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
High Mobility Group Box Protein 1 (HMGB1)-Partner Molecule Complexes Enhance Cytokine Production by Signaling Through the Partner Molecule Receptor
Published in
Molecular Medicine, November 2011
DOI 10.2119/molmed.2011.00327
Pubmed ID
Authors

Hulda Sigridur Hreggvidsdóttir, Anna M. Lundberg, Ann-Charlotte Aveberger, Lena Klevenvall, Ulf Andersson, Helena Erlandsson Harris

Abstract

The nuclear protein high mobility group box protein 1 (HMGB1) promotes inflammation upon extracellular release. HMGB1 induces proinflammatory cytokine production in macrophages via Toll-like receptor (TLR)-4 signaling in a redox-dependent fashion. Independent of its redox state and endogenous cytokine-inducing ability, HMGB1 can form highly immunostimulatory complexes by interaction with certain proinflammatory mediators. Such complexes have the ability to enhance the induced immune response up to 100-fold, compared with induction by the ligand alone. To clarify the mechanisms for these strong synergistic effects, we studied receptor requirements. Interleukin (IL)-6 production was assessed in supernatants from cultured peritoneal macrophages from mice each deficient in one of the HMGB1 receptors (receptor for advanced glycation end products [RAGE], TLR2 or TLR4) or from wild-type controls. The cultures were stimulated with the TLR4 ligand lipopolysaccaride (LPS), the TLR2 ligand Pam₃CysSerLys₄ (Pam₃CSK₄), noninflammatory HMGB1 or each TLR ligand in complex with noninflammatory HMGB1. The activity of the HMGB1-TLR ligand complexes relied on engagement of the same receptor as for the noncomplexed TLR ligand, since HMGB1-LPS complexes used TLR4 and HMGB1-Pam₃CSK₄ complexes used TLR2. Deletion of any of the intracellular adaptor molecules used by TLR2 (myeloid differentiation factor-88 [MyD88], TIR domain-containing adaptor protein [TIRAP]) or TLR4 (MyD88, TIRAP, TIR domain-containing adaptor-inducing interferon-β [TRIF], TRIF-related adaptor molecule [TRAM]) had similar effects on HMGB1 complex activation compared with noncomplexed LPS or Pam₃CSK₄. This result implies that the enhancing effects of HMGB1-partner molecule complexes are not regulated by the induction of additional signaling cascades. Elucidating HMGB1 receptor usage in processes where HMGB1 acts alone or in complex with other molecules is essential for the understanding of basic HMGB1 biology and for designing HMGB1-targeted therapies.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 5%
Japan 1 2%
Germany 1 2%
Unknown 52 91%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 26%
Student > Ph. D. Student 13 23%
Student > Master 6 11%
Student > Doctoral Student 4 7%
Student > Postgraduate 4 7%
Other 8 14%
Unknown 7 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 30%
Medicine and Dentistry 14 25%
Immunology and Microbiology 6 11%
Biochemistry, Genetics and Molecular Biology 5 9%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Other 3 5%
Unknown 10 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 January 2024.
All research outputs
#3,462,971
of 23,806,312 outputs
Outputs from Molecular Medicine
#125
of 1,187 outputs
Outputs of similar age
#19,063
of 143,839 outputs
Outputs of similar age from Molecular Medicine
#3
of 21 outputs
Altmetric has tracked 23,806,312 research outputs across all sources so far. Compared to these this one has done well and is in the 84th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,187 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 143,839 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.