↓ Skip to main content

RETRACTED ARTICLE: Detangling PPI networks to uncover functionally meaningful clusters

Overview of attention for article published in BMC Systems Biology, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
RETRACTED ARTICLE: Detangling PPI networks to uncover functionally meaningful clusters
Published in
BMC Systems Biology, March 2018
DOI 10.1186/s12918-018-0550-5
Pubmed ID
Authors

Sarah Hall-Swan, Jake Crawford, Rebecca Newman, Lenore J. Cowen

Abstract

Decomposing a protein-protein interaction network (PPI network) into non-overlapping clusters or communities, sometimes called "network modules," is an important way to explore functional roles of sets of genes. When the method to accomplish this decomposition is solely based on purely graph-theoretic measures of the interconnection structure of the network, this is often called unsupervised clustering or community detection. In this study, we compare unsupervised computational methods for decomposing a PPI network into non-overlapping modules. A method is preferred if it results in a large proportion of nodes being assigned to functionally meaningful modules, as measured by functional enrichment over terms from the Gene Ontology (GO). We compare the performance of three popular community detection algorithms with the same algorithms run after the network is pre-processed by removing and reweighting based on the diffusion state distance (DSD) between pairs of nodes in the network. We call this "detangling" the network. In almost all cases, we find that detangling the network based on the DSD distance reweighting provides more meaningful clusters. Re-embedding using the DSD distance metric, before applying standard community detection algorithms, can assist in uncovering GO functionally enriched clusters in the yeast PPI network.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 33%
Researcher 4 22%
Professor > Associate Professor 2 11%
Student > Doctoral Student 2 11%
Student > Bachelor 1 6%
Other 2 11%
Unknown 1 6%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 17%
Biochemistry, Genetics and Molecular Biology 3 17%
Computer Science 2 11%
Chemical Engineering 1 6%
Mathematics 1 6%
Other 4 22%
Unknown 4 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 November 2018.
All research outputs
#18,594,219
of 23,031,582 outputs
Outputs from BMC Systems Biology
#836
of 1,144 outputs
Outputs of similar age
#258,173
of 332,404 outputs
Outputs of similar age from BMC Systems Biology
#26
of 43 outputs
Altmetric has tracked 23,031,582 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,144 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,404 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.