↓ Skip to main content

Impact of RUNX2 on drug-resistant human pancreatic cancer cells with p53 mutations

Overview of attention for article published in BMC Cancer, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impact of RUNX2 on drug-resistant human pancreatic cancer cells with p53 mutations
Published in
BMC Cancer, March 2018
DOI 10.1186/s12885-018-4217-9
Pubmed ID
Authors

Toshinori Ozaki, Meng Yu, Danjing Yin, Dan Sun, Yuyan Zhu, Youquan Bu, Meixiang Sang

Abstract

Despite the remarkable advances in the early diagnosis and treatment, overall 5-year survival rate of patients with pancreatic cancer is less than 10%. Gemcitabine (GEM), a cytidine nucleoside analogue and ribonucleotide reductase inhibitor, is a primary option for patients with advanced pancreatic cancer; however, its clinical efficacy is extremely limited. This unfavorable clinical outcome of pancreatic cancer patients is at least in part attributable to their poor response to anti-cancer drugs such as GEM. Thus, it is urgent to understand the precise molecular basis behind the drug-resistant property of pancreatic cancer and also to develop a novel strategy to overcome this deadly disease. Accumulating evidence strongly suggests that p53 mutations contribute to the acquisition and/or maintenance of drug-resistant property of pancreatic cancer. Indeed, certain p53 mutants render pancreatic cancer cells much more resistant to GEM, implying that p53 mutation is one of the critical determinants of GEM sensitivity. Intriguingly, runt-related transcription factor 2 (RUNX2) is expressed at higher level in numerous human cancers such as pancreatic cancer and osteosarcoma, indicating that, in addition to its pro-osteogenic role, RUNX2 has a pro-oncogenic potential. Moreover, a growing body of evidence implies that a variety of miRNAs suppress malignant phenotypes of pancreatic cancer cells including drug resistance through the down-regulation of RUNX2. Recently, we have found for the first time that forced depletion of RUNX2 significantly increases GEM sensitivity of p53-null as well as p53-mutated pancreatic cancer cells through the stimulation of p53 family TAp63/TAp73-dependent cell death pathway. Together, it is likely that RUNX2 is one of the promising molecular targets for the treatment of the patients with pancreatic cancer regardless of their p53 status. In this review article, we will discuss how to overcome the serious drug-resistant phenotype of pancreatic cancer.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 9 26%
Student > Master 6 17%
Researcher 5 14%
Student > Postgraduate 3 9%
Student > Ph. D. Student 2 6%
Other 2 6%
Unknown 8 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 40%
Agricultural and Biological Sciences 3 9%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Medicine and Dentistry 2 6%
Chemical Engineering 1 3%
Other 4 11%
Unknown 9 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 August 2018.
All research outputs
#17,937,475
of 23,031,582 outputs
Outputs from BMC Cancer
#5,004
of 8,365 outputs
Outputs of similar age
#241,472
of 332,279 outputs
Outputs of similar age from BMC Cancer
#136
of 243 outputs
Altmetric has tracked 23,031,582 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,365 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,279 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 243 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.