↓ Skip to main content

Dynamic and temporal assessment of human dried blood spot MS/MSALL shotgun lipidomics analysis

Overview of attention for article published in Nutrition & Metabolism, March 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

patent
1 patent

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dynamic and temporal assessment of human dried blood spot MS/MSALL shotgun lipidomics analysis
Published in
Nutrition & Metabolism, March 2017
DOI 10.1186/s12986-017-0182-6
Pubmed ID
Authors

Fei Gao, Justice McDaniel, Emily Y. Chen, Hannah E. Rockwell, Jeremy Drolet, Vivek K. Vishnudas, Vladimir Tolstikov, Rangaprasad Sarangarajan, Niven R. Narain, Michael A. Kiebish

Abstract

Real-time and dynamic assessment of an individual's lipid homeostatic state in blood is complicated due to the need to collect samples in a clinical environment. In the context of precision medicine and population health, tools that facilitate sample collection and empower the individual to participate in the process are necessary to complement advanced bioanalytical analysis. The dried blood spot (DBS) methodology via finger prick or heel prick is a minimally invasive sample collection method that allows the relative ease and low cost of sample collection as well as transport. However, it has yet to be integrated into broad scale personalized lipidomic analysis. Therefore, in this study we report the development of a novel DBS high resolution MS/MS(ALL) lipidomics workflow. In this report we compared lipidomic analysis of four types of blood sample collection methods (DBS, venous whole blood, serum, and plasma) across several parameters, which include lipidomics coverage of each matrix and the effects of temperature and time on the coverage and stability of different lipid classes and molecular species. The novel DBS-MS/MS(ALL) lipidomics platform developed in this report was then applied to examine postprandial effects on the blood lipidome and further to explore the temporal fluctuation of the lipidome across hours and days. More than 1,200 lipid molecular species from a single DBS sample were identified and quantified. The lipidomics profile of the DBS samples is comparable to whole blood matrix. DBS-MS/MS(ALL) lipidomic analysis in postprandial experiments revealed significant alterations in triacylglyceride species. Temporal analysis of the lipidome at various times in the day and across days identified several lipid species that fluctuate as a function of time, and a subset of lipid species were identified to be significantly altered across hours within a day and within successive days of the week. A novel DBS-MS/MS(ALL) lipidomics method has been established for human blood. The feasibility and application of this method demonstrate the potential utility for lipidomics analysis in both healthy and diverse diseases states. This DBS MS-based lipidomics analysis represents a formidable approach for empowering patients and individuals in the era of precision medicine to uncover novel biomarkers and to monitor lipid homeostasis.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 17%
Student > Master 11 17%
Researcher 10 16%
Student > Bachelor 7 11%
Professor 5 8%
Other 12 19%
Unknown 8 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 22%
Chemistry 11 17%
Agricultural and Biological Sciences 6 9%
Medicine and Dentistry 5 8%
Nursing and Health Professions 3 5%
Other 15 23%
Unknown 10 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 November 2017.
All research outputs
#7,552,525
of 23,039,416 outputs
Outputs from Nutrition & Metabolism
#491
of 950 outputs
Outputs of similar age
#121,376
of 309,834 outputs
Outputs of similar age from Nutrition & Metabolism
#9
of 18 outputs
Altmetric has tracked 23,039,416 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 950 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.7. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,834 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.