↓ Skip to main content

Low pyrrolizidine alkaloid levels in perennial ryegrass is associated with the absence of a homospermidine synthase gene

Overview of attention for article published in BMC Plant Biology, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Low pyrrolizidine alkaloid levels in perennial ryegrass is associated with the absence of a homospermidine synthase gene
Published in
BMC Plant Biology, April 2018
DOI 10.1186/s12870-018-1269-6
Pubmed ID
Authors

Geoffrey P. Gill, Catherine J. Bryant, Mikhail Fokin, Jan Huege, Karl Fraser, Chris Jones, Mingshu Cao, Marty J. Faville

Abstract

Pyrrolizidine alkaloids (PAs) are a class of secondary metabolites that function as feeding deterrents in a range of different plant species. In perennial ryegrass (Lolium perenne L.) the only PAs that have been identified are the thesinine-rhamnoside group, which displays significant genetic variation. Homospermidine synthase (HSS) has evolved from deoxyhypusine synthase (DHS) and catalyses the first step in the PA pathway, making it a key candidate for the investigation of genes influencing observed PA trait variation. During PCR amplification and sequence analysis of DHS we identified two putative HSS genes in perennial ryegrass. One of the genes (LpHSS1) was absent in some perennial ryegrass plants. Thesinine-rhamnoside levels were measured using liquid chromatography coupled with mass spectrometry in a diverse association mapping population, consisting of 693 plants free of fungal endophytic symbionts. Association tests that accounted for population structure identified a significant association of absence of the LpHSS1 gene with lower levels of thesinine-rhamnoside PAs. HSS-like gene sequences were identified for other grass species of the Poaceae, including tall fescue, wheat, maize and sorghum. HSS is situated at the crucial first step in the PA pathway making it an important candidate gene for investigation of involvement in PA phenotypic variation. In this study, PA level in perennial ryegrass was strongly associated with the presence or absence of the LpHSS1 gene. A genetic marker, developed for the presence/absence of LpHSS1, may be used for marker-assisted breeding to either lower or increase PAs in breeding populations of perennial or Italian ryegrass to investigate a potential role in the deterrence of herbivore pests. The presence of HSS-like genes in several other Poaceae species suggests that PA biosynthesis may occur in plant family members beyond perennial ryegrass and tall fescue and identifies a potential route for manipulating PA levels.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 25%
Student > Ph. D. Student 2 17%
Student > Bachelor 1 8%
Unknown 6 50%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 25%
Engineering 2 17%
Biochemistry, Genetics and Molecular Biology 1 8%
Unknown 6 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 September 2019.
All research outputs
#17,944,820
of 23,041,514 outputs
Outputs from BMC Plant Biology
#1,922
of 3,281 outputs
Outputs of similar age
#239,330
of 329,529 outputs
Outputs of similar age from BMC Plant Biology
#20
of 36 outputs
Altmetric has tracked 23,041,514 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,281 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,529 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.