↓ Skip to main content

'Frankenstein genes', or the Mad Magazineversion of the human pseudogenome

Overview of attention for article published in Human Genomics, May 2004
Altmetric Badge

Mentioned by

wikipedia
2 Wikipedia pages

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
'Frankenstein genes', or the Mad Magazineversion of the human pseudogenome
Published in
Human Genomics, May 2004
DOI 10.1186/1479-7364-1-4-310
Pubmed ID
Authors

David R. Nelson

Abstract

Annotation of the human genome is inching forward. Seven human chromosomes have now been fully annotated, covering 17 per cent of the genome, and at least one chromosome has been re-annotated. The enormity of the task forces a dependence on automated tools for detecting and assembling the genes, followed by hand curation to correct errors and polish the gene models. The accuracy of gene prediction algorithms is very good for internal exons from intact genes, but these programs do peculiar and exasperating things to pseudogenes. These programs can actually resurrect pseudogenes from the dead, making them into viable gene models for intact proteins, albeit science-fictional proteins. This process is demonstrated for four human pseudogenes from the cytochrome P450 family and one putatively functional P450 gene, CYP2U1, having a non-consensus intron boundary. These examples are offered as a call-to-arms to improve pseudogene prediction as an art in itself, and not as a by-product of gene annotation. Failure to do so will flood the databases with thousands of false-positive predictions. Indeed, they are already there.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 50%
Professor > Associate Professor 1 17%
Student > Ph. D. Student 1 17%
Unknown 1 17%
Readers by discipline Count As %
Arts and Humanities 2 33%
Biochemistry, Genetics and Molecular Biology 1 17%
Computer Science 1 17%
Agricultural and Biological Sciences 1 17%
Unknown 1 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 September 2022.
All research outputs
#8,537,346
of 25,377,790 outputs
Outputs from Human Genomics
#211
of 564 outputs
Outputs of similar age
#20,972
of 62,297 outputs
Outputs of similar age from Human Genomics
#2
of 3 outputs
Altmetric has tracked 25,377,790 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 564 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 62,297 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 3 others from the same source and published within six weeks on either side of this one.