↓ Skip to main content

Chronic kidney disease alters lipid trafficking and inflammatory responses in macrophages: effects of liver X receptor agonism

Overview of attention for article published in BMC Nephrology, January 2018
Altmetric Badge

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Chronic kidney disease alters lipid trafficking and inflammatory responses in macrophages: effects of liver X receptor agonism
Published in
BMC Nephrology, January 2018
DOI 10.1186/s12882-018-0814-8
Pubmed ID
Authors

Ryohei Kaseda, Yohei Tsuchida, Hai-Chun Yang, Patricia G. Yancey, Jianyong Zhong, Huan Tao, Aihua Bian, Agnes B. Fogo, Mac Rae F. Linton, Sergio Fazio, Talat Alp Ikizler, Valentina Kon

Abstract

Our aim was to evaluate lipid trafficking and inflammatory response of macrophages exposed to lipoproteins from subjects with moderate to severe chronic kidney disease (CKD), and to investigate the potential benefits of activating cellular cholesterol transporters via liver X receptor (LXR) agonism. LDL and HDL were isolated by sequential density gradient ultracentrifugation of plasma from patients with stage 3-4 CKD and individuals without kidney disease (HDLCKD and HDLCont, respectively). Uptake of LDL, cholesterol efflux to HDL, and cellular inflammatory responses were assessed in human THP-1 cells. HDL effects on inflammatory markers (MCP-1, TNF-α, IL-1β), Toll-like receptors-2 (TLR-2) and - 4 (TLR-4), ATP-binding cassette class A transporter (ABCA1), NF-κB, extracellular signal regulated protein kinases 1/2 (ERK1/2) were assessed by RT-PCR and western blot before and after in vitro treatment with an LXR agonist. There was no difference in macrophage uptake of LDL isolated from CKD versus controls. By contrast, HDCKD was significantly less effective than HDLCont in accepting cholesterol from cholesterol-enriched macrophages (median 20.8% [IQR 16.1-23.7] vs control (26.5% [IQR 19.6-28.5]; p = 0.008). LXR agonist upregulated ABCA1 expression and increased cholesterol efflux to HDL of both normal and CKD subjects, although the latter continued to show lower efflux capacity. HDLCKD increased macrophage cytokine response (TNF-α, MCP-1, IL-1β, and NF-κB) versus HDLCont. The heightened cytokine response to HDLCKD was further amplified in cells treated with LXR agonist. The LXR-augmentation of inflammation was associated with increased TLR-2 and TLR-4 and ERK1/2. Moderate to severe impairment in kidney function promotes foam cell formation that reflects impairment in cholesterol acceptor function of HDLCKD. Activation of cellular cholesterol transporters by LXR agonism improves but does not normalize efflux to HDLCKD. However, LXR agonism actually increases the pro-inflammatory effects of HDLCKD through activation of TLRs and ERK1/2 pathways.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 3 27%
Student > Master 2 18%
Researcher 2 18%
Student > Ph. D. Student 1 9%
Unknown 3 27%
Readers by discipline Count As %
Medicine and Dentistry 4 36%
Pharmacology, Toxicology and Pharmaceutical Science 3 27%
Immunology and Microbiology 1 9%
Unknown 3 27%