↓ Skip to main content

A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study

Overview of attention for article published in Journal of NeuroEngineering and Rehabilitation, February 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users
video
1 YouTube creator

Citations

dimensions_citation
119 Dimensions

Readers on

mendeley
318 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study
Published in
Journal of NeuroEngineering and Rehabilitation, February 2015
DOI 10.1186/s12984-015-0015-7
Pubmed ID
Authors

Kota Z Takahashi, Michael D Lewek, Gregory S Sawicki

Abstract

In persons post-stroke, diminished ankle joint function can contribute to inadequate gait propulsion. To target paretic ankle impairments, we developed a neuromechanics-based powered ankle exoskeleton. Specifically, this exoskeleton supplies plantarflexion assistance that is proportional to the user's paretic soleus electromyography (EMG) amplitude only during a phase of gait when the stance limb is subjected to an anteriorly directed ground reaction force (GRF). The purpose of this feasibility study was to examine the short-term effects of the powered ankle exoskeleton on the mechanics and energetics of gait. Five subjects with stroke walked with a powered ankle exoskeleton on the paretic limb for three 5 minute sessions. We analyzed the peak paretic ankle plantarflexion moment, paretic ankle positive work, symmetry of GRF propulsion impulse, and net metabolic power. The exoskeleton increased the paretic plantarflexion moment by 16% during the powered walking trials relative to unassisted walking condition (p < .05). Despite this enhanced paretic ankle moment, there was no significant increase in paretic ankle positive work, or changes in any other mechanical variables with the powered assistance. The exoskeleton assistance appeared to reduce the net metabolic power gradually with each 5 minute repetition, though no statistical significance was found. In three of the subjects, the paretic soleus activation during the propulsion phase of stance was reduced during the powered assistance compared to unassisted walking (35% reduction in the integrated EMG amplitude during the third powered session). This feasibility study demonstrated that the exoskeleton can enhance paretic ankle moment. Future studies with greater sample size and prolonged sessions are warranted to evaluate the effects of the powered ankle exoskeleton on overall gait outcomes in persons post-stroke.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 318 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 <1%
Czechia 1 <1%
Slovenia 1 <1%
Unknown 314 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 68 21%
Student > Master 50 16%
Researcher 33 10%
Student > Doctoral Student 28 9%
Student > Bachelor 20 6%
Other 45 14%
Unknown 74 23%
Readers by discipline Count As %
Engineering 127 40%
Nursing and Health Professions 24 8%
Medicine and Dentistry 19 6%
Neuroscience 15 5%
Sports and Recreations 12 4%
Other 23 7%
Unknown 98 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 November 2022.
All research outputs
#15,740,505
of 25,374,917 outputs
Outputs from Journal of NeuroEngineering and Rehabilitation
#778
of 1,413 outputs
Outputs of similar age
#140,589
of 270,081 outputs
Outputs of similar age from Journal of NeuroEngineering and Rehabilitation
#11
of 21 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,413 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 270,081 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.