↓ Skip to main content

The production of viral vectors designed to express large and difficult to express transgenes within neurons

Overview of attention for article published in Molecular Brain, February 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (75th percentile)
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
4 X users
patent
1 patent

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
116 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The production of viral vectors designed to express large and difficult to express transgenes within neurons
Published in
Molecular Brain, February 2015
DOI 10.1186/s13041-015-0100-7
Pubmed ID
Authors

Roopashri Holehonnur, Srihari K Lella, Anthony Ho, Jonathan A Luong, Jonathan E Ploski

Abstract

Viral vectors are frequently used to deliver and direct expression of transgenes in a spatially and temporally restricted manner within the nervous system of numerous model organisms. Despite the common use of viral vectors to direct ectopic expression of transgenes within the nervous system, creating high titer viral vectors that are capable of expressing very large transgenes or difficult to express transgenes imposes unique challenges. Here we describe the development of adeno-associated viruses (AAV) and lentiviruses designed to express the large and difficult to express GluN2A or GluN2B subunits of the N-methyl-D-aspartate receptor (NMDA) receptor, specifically within neurons. We created a number of custom designed AAV and lentiviral vectors that were optimized for large transgenes, by minimizing DNA sequences that were not essential, utilizing short promoter sequences of 8 widely used promoters (RSV, EFS, TRE3G, 0.4αCaMKII, 1.3αCaMKII, 0.5Synapsin, 1.1Synapsin and CMV) and utilizing a very short (~75 bps) 3' untranslated sequence. Not surprisingly these promoters differed in their ability to express the GluN2 subunits, however surprisingly we found that the neuron specific synapsin and αCaMKII, promoters were incapable of conferring detectable expression of full length GluN2 subunits and detectable expression could only be achieved from these promoters if the transgene included an intron or if the GluN2 subunit transgenes were truncated to only include the coding regions of the GluN2 transmembrane domains. We determined that viral packaging limit, transgene promoter and the presence of an intron within the transgene were all important factors that contributed to being able to successfully develop viral vectors designed to deliver and express GluN2 transgenes in a neuron specific manner. Because these vectors have been optimized to accommodate large open reading frames and in some cases contain an intron to facilitate expression of difficult to express transgenes, these viral vectors likely could be useful for delivering and expressing many large or difficult to express transgenes in a neuron specific manner.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 116 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 2%
Spain 1 <1%
France 1 <1%
Unknown 112 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 25 22%
Student > Ph. D. Student 19 16%
Student > Master 19 16%
Student > Bachelor 14 12%
Student > Doctoral Student 6 5%
Other 14 12%
Unknown 19 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 38 33%
Biochemistry, Genetics and Molecular Biology 23 20%
Neuroscience 18 16%
Medicine and Dentistry 5 4%
Immunology and Microbiology 4 3%
Other 8 7%
Unknown 20 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 October 2022.
All research outputs
#5,756,911
of 23,555,482 outputs
Outputs from Molecular Brain
#268
of 1,142 outputs
Outputs of similar age
#62,725
of 256,843 outputs
Outputs of similar age from Molecular Brain
#7
of 23 outputs
Altmetric has tracked 23,555,482 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,142 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 256,843 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.