↓ Skip to main content

Increase in the extracellular glutamate level during seizures and electrical stimulation determined using a high temporal resolution technique

Overview of attention for article published in BMC Neuroscience, March 2015
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Increase in the extracellular glutamate level during seizures and electrical stimulation determined using a high temporal resolution technique
Published in
BMC Neuroscience, March 2015
DOI 10.1186/s12868-015-0147-5
Pubmed ID
Authors

Laura Medina-Ceja, Kenia Pardo-Peña, Alberto Morales-Villagrán, Jorge Ortega-Ibarra, Silvia López-Pérez

Abstract

Glutamate has been measured using different methods to determine its role under normal and pathological conditions. Although microdialysis coupled with HPLC is the preferred method to study glutamate, this technique exhibits poor temporal resolution and is time consuming. The concentration of glutamate in dialysis samples can be measured via glutamate oxidase using the Amplex Red method. A new device has been designed and constructed to rapidly deposit dialysis samples onto a polycarbonate plate at Cartesian coordinates (every five seconds). The samples were added to an enzymatic reaction that generates hydrogen peroxide from glutamate, which was quantified using fluorescence detection. Fluorescence emission was induced by laser excitation, stimulating each spot automatically, in addition to controlling the humidity, temperature and incubation time of the enzymatic reaction. The measurement of standard glutamate concentrations was linear and could be performed in dialysis samples. This approach was used to determine the effect of the convulsant drugs bicuculline and 4-aminopyridine on the extracellular glutamate concentration. Seizure activity was associated with a considerable increase in glutamate that correlated with altered EEG patterns for both drugs. These results indicate that this method is able to read samples with high temporal resolution, and it is easy to use compared with classical methods such as high-performance liquid chromatography, with the advantage that a large number of samples can be measured in a single experimental series. This method provides an alternative approach to determine the concentrations of neurotransmitters or other compounds that generate hydrogen peroxide as a reaction product.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 18%
Student > Bachelor 5 13%
Student > Ph. D. Student 5 13%
Student > Master 4 11%
Student > Doctoral Student 3 8%
Other 6 16%
Unknown 8 21%
Readers by discipline Count As %
Neuroscience 7 18%
Engineering 6 16%
Medicine and Dentistry 5 13%
Agricultural and Biological Sciences 3 8%
Biochemistry, Genetics and Molecular Biology 2 5%
Other 6 16%
Unknown 9 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 March 2015.
All research outputs
#20,264,045
of 22,794,367 outputs
Outputs from BMC Neuroscience
#1,054
of 1,244 outputs
Outputs of similar age
#220,475
of 260,871 outputs
Outputs of similar age from BMC Neuroscience
#19
of 21 outputs
Altmetric has tracked 22,794,367 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,244 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 260,871 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.