↓ Skip to main content

Neonatal hyperglycemia induces CXCL10/CXCR3 signaling and microglial activation and impairs long-term synaptogenesis in the hippocampus and alters behavior in rats

Overview of attention for article published in Journal of Neuroinflammation, March 2018
Altmetric Badge

Mentioned by

facebook
2 Facebook pages

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Neonatal hyperglycemia induces CXCL10/CXCR3 signaling and microglial activation and impairs long-term synaptogenesis in the hippocampus and alters behavior in rats
Published in
Journal of Neuroinflammation, March 2018
DOI 10.1186/s12974-018-1121-9
Pubmed ID
Authors

Katherine M. Satrom, Kathleen Ennis, Brian M. Sweis, Tatyana M. Matveeva, Jun Chen, Leif Hanson, Akhil Maheshwari, Raghavendra Rao

Abstract

Hyperglycemia is common in extremely low gestational age newborns (ELGAN) and is associated with increased mortality and morbidity, including abnormal neurodevelopment. Hippocampus-mediated cognitive deficits are common in this population, but the specific effects of hyperglycemia on the developing hippocampus are not known. The objective of this study was to determine the acute and long-term effects of hyperglycemia on the developing hippocampus in neonatal rats using a streptozotocin (STZ)-induced model of hyperglycemia. STZ was injected on postnatal day (P) 2, and littermates in the control group were injected with an equivalent volume of citrate buffer. The acute effects of hyperglycemia on markers of oxidative stress, inflammatory cytokines, microglial activation, and reactive astrocytosis in the hippocampus were determined in the brain tissue collected on P6. The long-term effects on hippocampus-mediated behavior and hippocampal dendrite structure were determined on P90. On P6, the transcript and protein expression of markers of oxidative stress and inflammatory cytokines, including the CXCL10/CXCR3 pathway, were upregulated in the hyperglycemia group. Histological evaluation revealed microglial activation and astrocytosis. The long-term assessment on P90 demonstrated abnormal performance in Barnes maze neurobehavioral testing and altered dendrite structure in the hippocampus of formerly hyperglycemic rats. Neonatal hyperglycemia induces CXCL10/CXCR3 signaling, microglial activation, and astrocytosis in the rat hippocampus and alters long-term synaptogenesis and behavior. These results may explain the hippocampus-specific cognitive deficits common in ELGAN who experience neonatal hyperglycemia.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 19%
Student > Master 7 15%
Student > Ph. D. Student 7 15%
Other 3 6%
Student > Postgraduate 3 6%
Other 5 11%
Unknown 13 28%
Readers by discipline Count As %
Neuroscience 10 21%
Medicine and Dentistry 8 17%
Biochemistry, Genetics and Molecular Biology 6 13%
Agricultural and Biological Sciences 2 4%
Computer Science 2 4%
Other 6 13%
Unknown 13 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 April 2018.
All research outputs
#18,603,172
of 23,043,346 outputs
Outputs from Journal of Neuroinflammation
#2,088
of 2,659 outputs
Outputs of similar age
#259,440
of 333,789 outputs
Outputs of similar age from Journal of Neuroinflammation
#53
of 74 outputs
Altmetric has tracked 23,043,346 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,659 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,789 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 74 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.