↓ Skip to main content

Prokaryotic assemblages and metagenomes in pelagic zones of the South China Sea

Overview of attention for article published in BMC Genomics, March 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (71st percentile)

Mentioned by

twitter
10 tweeters

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Prokaryotic assemblages and metagenomes in pelagic zones of the South China Sea
Published in
BMC Genomics, March 2015
DOI 10.1186/s12864-015-1434-3
Pubmed ID
Authors

Ching-Hung Tseng, Pei-Wen Chiang, Hung-Chun Lai, Fuh-Kwo Shiah, Ting-Chang Hsu, Yi-Lung Chen, Liang-Saw Wen, Chun-Mao Tseng, Wung-Yang Shieh, Isaam Saeed, Saman Halgamuge, Sen-Lin Tang

Abstract

Prokaryotic microbes, the most abundant organisms in the ocean, are remarkably diverse. Despite numerous studies of marine prokaryotes, the zonation of their communities in pelagic zones has been poorly delineated. By exploiting the persistent stratification of the South China Sea (SCS), we performed a 2-year, large spatial scale (10, 100, 1000, and 3000 m) survey, which included a pilot study in 2006 and comprehensive sampling in 2007, to investigate the biological zonation of bacteria and archaea using 16S rRNA tag and shotgun metagenome sequencing. Alphaproteobacteria dominated the bacterial community in the surface SCS, where the abundance of Betaproteobacteria was seemingly associated with climatic activity. Gammaproteobacteria thrived in the deep SCS, where a noticeable amount of Cyanobacteria were also detected. Marine Groups II and III Euryarchaeota were predominant in the archaeal communities in the surface and deep SCS, respectively. Bacterial diversity was higher than archaeal diversity at all sampling depths in the SCS, and peaked at mid-depths, agreeing with the diversity pattern found in global water columns. Metagenomic analysis not only showed differential %GC values and genome sizes between the surface and deep SCS, but also demonstrated depth-dependent metabolic potentials, such as cobalamin biosynthesis at 10 m, osmoregulation at 100 m, signal transduction at 1000 m, and plasmid and phage replication at 3000 m. When compared with other oceans, urease at 10 m and both exonuclease and permease at 3000 m were more abundant in the SCS. Finally, enriched genes associated with nutrient assimilation in the sea surface and transposase in the deep-sea metagenomes exemplified the functional zonation in global oceans. Prokaryotic communities in the SCS stratified with depth, with maximal bacterial diversity at mid-depth, in accordance with global water columns. The SCS had functional zonation among depths and endemically enriched metabolic potentials at the study site, in contrast to other oceans.

Twitter Demographics

The data shown below were collected from the profiles of 10 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 2%
Unknown 63 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 23%
Researcher 12 19%
Student > Master 9 14%
Student > Doctoral Student 7 11%
Professor > Associate Professor 6 9%
Other 9 14%
Unknown 6 9%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 34%
Biochemistry, Genetics and Molecular Biology 10 16%
Environmental Science 7 11%
Earth and Planetary Sciences 7 11%
Immunology and Microbiology 5 8%
Other 3 5%
Unknown 10 16%

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 January 2016.
All research outputs
#5,049,343
of 17,872,053 outputs
Outputs from BMC Genomics
#2,494
of 9,449 outputs
Outputs of similar age
#65,344
of 231,849 outputs
Outputs of similar age from BMC Genomics
#1
of 1 outputs
Altmetric has tracked 17,872,053 research outputs across all sources so far. This one has received more attention than most of these and is in the 70th percentile.
So far Altmetric has tracked 9,449 research outputs from this source. They receive a mean Attention Score of 4.4. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 231,849 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them