↓ Skip to main content

Sdf-1 (CXCL12) induces CD9 expression in stem cells engaged in muscle regeneration

Overview of attention for article published in Stem Cell Research & Therapy, March 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sdf-1 (CXCL12) induces CD9 expression in stem cells engaged in muscle regeneration
Published in
Stem Cell Research & Therapy, March 2015
DOI 10.1186/s13287-015-0041-1
Pubmed ID
Authors

Edyta Brzoska, Kamil Kowalski, Agnieszka Markowska-Zagrajek, Magdalena Kowalewska, Rafał Archacki, Izabela Plaskota, Władysława Stremińska, Katarzyna Jańczyk-Ilach, Maria A Ciemerych

Abstract

Understanding the mechanism of stem cell mobilization into injured skeletal muscles is a prerequisite step for the development of muscle disease therapies. Many of the currently studied stem cell types present myogenic potential; however, when introduced either into the blood stream or directly into the tissue, they are not able to efficiently engraft injured muscle. For this reason their use in therapy is still limited. Previously, we have shown that stromal-derived factor-1 (Sdf-1) caused the mobilization of endogenous (not transplanted) stem cells into injured skeletal muscle improving regeneration. Here, we demonstrate that the beneficial effect of Sdf-1 relies on the upregulation of the tetraspanin CD9 expression in stem cells. The expression pattern of adhesion proteins, including CD9, was analysed after Sdf-1 treatment during regeneration of rat skeletal muscles and mouse Pax7-/- skeletal muscles, that are characterized by the decreased number of satellite cells. Next, we examined the changes in CD9 level in satellite cells-derived myoblasts, bone marrow-derived mesenchymal stem cells, and embryonic stem cells after Sdf-1 treatment or silencing expression of CXCR4 and CXCR7. Finally, we examined the potential of stem cells to fuse with myoblasts after Sdf-1 treatment. In vivo analyses of Pax7-/- mice strongly suggest that Sdf-1-mediates increase in CD9 levels also in mobilized stem cells. In the absence of CXCR4 receptor the effect of Sdf-1 on CD9 expression is blocked. Next, in vitro studies show that Sdf-1 increases the level of CD9 not only in satellite cell-derived myoblasts but also in bone marrow derived mesenchymal stem cells, as well as embryonic stem cells. Importantly, the Sdf-1 treated cells migrate and fuse with myoblasts more effectively. We suggest that Sdf-1 binding CXCR4 receptor improves skeletal muscle regeneration by upregulating expression of CD9 and thus, impacting at stem cells mobilization to the injured muscles.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 7%
Germany 1 2%
Unknown 40 91%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 23%
Student > Ph. D. Student 10 23%
Student > Bachelor 7 16%
Student > Doctoral Student 3 7%
Student > Master 3 7%
Other 7 16%
Unknown 4 9%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 36%
Biochemistry, Genetics and Molecular Biology 7 16%
Immunology and Microbiology 3 7%
Sports and Recreations 2 5%
Unspecified 1 2%
Other 7 16%
Unknown 8 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 April 2015.
All research outputs
#17,751,741
of 22,796,179 outputs
Outputs from Stem Cell Research & Therapy
#1,581
of 2,418 outputs
Outputs of similar age
#180,046
of 263,362 outputs
Outputs of similar age from Stem Cell Research & Therapy
#45
of 64 outputs
Altmetric has tracked 22,796,179 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,418 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,362 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 64 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.