↓ Skip to main content

Tryptase is involved in the development of early ventilator-induced pulmonary fibrosis in sepsis-induced lung injury

Overview of attention for article published in Critical Care, December 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

news
1 news outlet
twitter
12 X users
facebook
1 Facebook page
googleplus
1 Google+ user

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tryptase is involved in the development of early ventilator-induced pulmonary fibrosis in sepsis-induced lung injury
Published in
Critical Care, December 2015
DOI 10.1186/s13054-015-0878-9
Pubmed ID
Authors

Jesús Villar, Nuria E Cabrera-Benítez, Francisco Valladares, Sonia García-Hernández, Ángela Ramos-Nuez, José Luís Martín-Barrasa, Mercedes Muros, Robert M Kacmarek, Arthur S Slutsky

Abstract

Most patients with sepsis and acute lung injury require mechanical ventilation to improve oxygenation and facilitate organ repair. Mast cells are important in response to infection and resolution of tissue injury. Since tryptase secreted from mast cells has been associated with tissue fibrosis, we hypothesized that tryptase would be involved in the early development of ventilator-induced pulmonary fibrosis in a clinically relevant model of sepsis-induced lung injury. Prospective, randomized, controlled animal study using Sprague-Dawley rats. Sepsis was induced by cecal ligation and perforation. Animals were randomized to spontaneous breathing or two ventilatory strategies for 4 h: protective ventilation with tidal volume (VT) = 6 ml/kg plus 10 cmH2O positive end-expiratory pressure (PEEP) or injurious ventilation with VT = 20 ml/kg plus 2 cmH2O PEEP. Healthy, non-ventilated animals served as non-septic controls. We studied the following end points: histology, serum cytokine levels, hydroxyproline content, tryptase and proteinase-activated receptor-2 (PAR-2) protein level in lung homogenates, and tryptase and PAR-2 immunohistochemical localization in the lungs. All septic animals developed acute lung injury. Animals ventilated with high VT had a significant increase of pulmonary fibrosis, hydroxyproline content, tryptase and PAR-2 protein levels compared to septic controls (P <0.0001). However, protective ventilation attenuated sepsis-induced lung injury and decreased lung tryptase and PAR-2 protein levels. Immunohistochemical staining confirmed the presence of tryptase and PAR-2 in the lungs. Mechanical ventilation modified tryptase and PAR-2 in injured lungs. Increased levels of these proteins were associated with development of sepsis and ventilator-induced pulmonary fibrosis early in the course of sepsis-induced lung injury.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 2%
Unknown 44 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 16%
Researcher 5 11%
Student > Postgraduate 4 9%
Student > Master 4 9%
Student > Bachelor 3 7%
Other 7 16%
Unknown 15 33%
Readers by discipline Count As %
Medicine and Dentistry 19 42%
Agricultural and Biological Sciences 5 11%
Biochemistry, Genetics and Molecular Biology 2 4%
Immunology and Microbiology 2 4%
Nursing and Health Professions 1 2%
Other 3 7%
Unknown 13 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 18. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 May 2020.
All research outputs
#2,027,442
of 25,373,627 outputs
Outputs from Critical Care
#1,817
of 6,554 outputs
Outputs of similar age
#33,084
of 395,408 outputs
Outputs of similar age from Critical Care
#135
of 466 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,554 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.8. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 395,408 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 466 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.