↓ Skip to main content

Inflammatory mediator release from primary rhesus microglia in response to Borrelia burgdorferi results from the activation of several receptors and pathways

Overview of attention for article published in Journal of Neuroinflammation, March 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users
facebook
4 Facebook pages

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inflammatory mediator release from primary rhesus microglia in response to Borrelia burgdorferi results from the activation of several receptors and pathways
Published in
Journal of Neuroinflammation, March 2015
DOI 10.1186/s12974-015-0274-z
Pubmed ID
Authors

Geetha Parthasarathy, Mario T Philipp

Abstract

In previous studies, neurons were documented to undergo apoptosis in the presence of microglia and live Borrelia burgdorferi, but not with either agent alone. Microscopy showed that several Toll-like receptors (TLRs) were upregulated in microglia upon B. burgdorferi exposure. It was hypothesized that the inflammatory milieu generated by microglia in the presence of B. burgdorferi results in neuronal apoptosis and that this inflammation was likely generated through TLR pathways. In this study, we explored the role of several TLR and nucleotide-binding oligomerization domain containing 2 (NOD2)-dependent pathways in inducing inflammation in the presence of B. burgdorferi, using ribonucleic acid interference (RNAi) and/or inhibitors, in primary non-human primate (NHP) microglia. We also used several inhibitors for key mitogen-activated protein kinase (MAPK) pathways to determine the role of downstream pathways in inflammatory mediator release. The results show that the TLR2 pathway plays a predominant role in inducing inflammation, as inhibition of TLR2 with either small interfering RNA (siRNA) or inhibitor, in the presence of B. burgdorferi, significantly downregulated interleukin 6 (IL-6), chemokine (C-X-C) motif ligand 8 (CXCL8), chemokine (C-C) motif ligand 2 (CCL2), and tumor necrosis factor (TNF) production. This was followed by TLR5, the silencing of which significantly downregulated IL-6 and TNF. The role of TLR4 was inconclusive as a TLR4-specific inhibitor and TLR4 siRNA had opposing effects in the presence of B. burgdorferi. Silencing of NOD2 by siRNA in the presence of B. burgdorferi significantly upregulated IL-6, CCL2, and TNF. Downstream signaling involved the adaptor molecule myeloid differentiation primary response 88 (MyD88), as expected, as well as the MAPK pathways, with extracellular signal-regulated kinase (ERK) being predominant, followed by Jun N-terminal kinase (JNK) and p38 pathways. Several receptors and pathways, with both positive and negative effects, mediate inflammation of primary microglia in response to B. burgdorferi, resulting in a complex, tightly regulated immune network.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 7 25%
Researcher 6 21%
Student > Ph. D. Student 5 18%
Other 1 4%
Librarian 1 4%
Other 3 11%
Unknown 5 18%
Readers by discipline Count As %
Immunology and Microbiology 5 18%
Medicine and Dentistry 5 18%
Agricultural and Biological Sciences 5 18%
Neuroscience 2 7%
Nursing and Health Professions 2 7%
Other 4 14%
Unknown 5 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 August 2017.
All research outputs
#13,175,336
of 23,577,761 outputs
Outputs from Journal of Neuroinflammation
#1,392
of 2,726 outputs
Outputs of similar age
#119,976
of 265,334 outputs
Outputs of similar age from Journal of Neuroinflammation
#26
of 45 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,726 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.7. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,334 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.