↓ Skip to main content

Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders

Overview of attention for article published in Molecular Autism, April 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

news
1 news outlet
blogs
1 blog
twitter
16 X users
facebook
1 Facebook page
googleplus
1 Google+ user

Citations

dimensions_citation
115 Dimensions

Readers on

mendeley
224 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders
Published in
Molecular Autism, April 2015
DOI 10.1186/s13229-015-0017-0
Pubmed ID
Authors

Marta Codina-Solà, Benjamín Rodríguez-Santiago, Aïda Homs, Javier Santoyo, Maria Rigau, Gemma Aznar-Laín, Miguel del Campo, Blanca Gener, Elisabeth Gabau, María Pilar Botella, Armand Gutiérrez-Arumí, Guillermo Antiñolo, Luis Alberto Pérez-Jurado, Ivon Cuscó

Abstract

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with high heritability. Recent findings support a highly heterogeneous and complex genetic etiology including rare de novo and inherited mutations or chromosomal rearrangements as well as double or multiple hits. We performed whole-exome sequencing (WES) and blood cell transcriptome by RNAseq in a subset of male patients with idiopathic ASD (n = 36) in order to identify causative genes, transcriptomic alterations, and susceptibility variants. We detected likely monogenic causes in seven cases: five de novo (SCN2A, MED13L, KCNV1, CUL3, and PTEN) and two inherited X-linked variants (MAOA and CDKL5). Transcriptomic analyses allowed the identification of intronic causative mutations missed by the usual filtering of WES and revealed functional consequences of some rare mutations. These included aberrant transcripts (PTEN, POLR3C), deregulated expression in 1.7% of mutated genes (that is, SEMA6B, MECP2, ANK3, CREBBP), allele-specific expression (FUS, MTOR, TAF1C), and non-sense-mediated decay (RIT1, ALG9). The analysis of rare inherited variants showed enrichment in relevant pathways such as the PI3K-Akt signaling and the axon guidance. Integrative analysis of WES and blood RNAseq data has proven to be an efficient strategy to identify likely monogenic forms of ASD (19% in our cohort), as well as additional rare inherited mutations that can contribute to ASD risk in a multifactorial manner. Blood transcriptomic data, besides validating 88% of expressed variants, allowed the identification of missed intronic mutations and revealed functional correlations of genetic variants, including changes in splicing, expression levels, and allelic expression.

X Demographics

X Demographics

The data shown below were collected from the profiles of 16 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 224 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 2 <1%
Unknown 222 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 42 19%
Researcher 42 19%
Student > Master 31 14%
Student > Bachelor 21 9%
Student > Doctoral Student 13 6%
Other 38 17%
Unknown 37 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 54 24%
Agricultural and Biological Sciences 48 21%
Neuroscience 31 14%
Medicine and Dentistry 21 9%
Computer Science 5 2%
Other 20 9%
Unknown 45 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 24. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 October 2019.
All research outputs
#1,334,493
of 22,799,071 outputs
Outputs from Molecular Autism
#139
of 668 outputs
Outputs of similar age
#18,627
of 264,077 outputs
Outputs of similar age from Molecular Autism
#10
of 19 outputs
Altmetric has tracked 22,799,071 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 668 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 28.4. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,077 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.