↓ Skip to main content

Resolution of bleomycin-induced murine pulmonary fibrosis via a splenic lymphocyte subpopulation

Overview of attention for article published in Respiratory Research, April 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Resolution of bleomycin-induced murine pulmonary fibrosis via a splenic lymphocyte subpopulation
Published in
Respiratory Research, April 2018
DOI 10.1186/s12931-018-0783-2
Pubmed ID
Authors

Koichiro Kamio, Arata Azuma, Kuniko Matsuda, Jiro Usuki, Minoru Inomata, Akemi Morinaga, Takeru Kashiwada, Nobuhiko Nishijima, Shioto Itakura, Nariaki Kokuho, Kenichiro Atsumi, Hiroki Hayashi, Tomoyoshi Yamaguchi, Kazue Fujita, Yoshinobu Saito, Shinji Abe, Kaoru Kubota, Akihiko Gemma

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with high mortality, and the pathogenesis of the disease is still incompletely understood. Although lymphocytes, especially CD4+CD25+FoxP3+ regulatory T cells (Tregs), have been implicated in the development of IPF, contradictory results have been reported regarding the contribution of Tregs to fibrosis both in animals and humans. The aim of this study was to investigate whether a specific T cell subset has therapeutic potential in inhibiting bleomycin (BLM)-induced murine pulmonary fibrosis. C57BL/6 mice received BLM (100 mg/kg body weight) with osmotic pumps (day 0), and pulmonary fibrosis was induced. Then, splenocytes or Tregs were adoptively transferred via the tail vein. The lungs were removed and subjected to histological and biochemical examinations to study the effects of these cells on pulmonary fibrosis, and blood samples were collected by cardiac punctures to measure relevant cytokines by enzyme-linked immunosorbent assay. Tregs isolated from an interleukin (IL)-10 knock-out mice were used to assess the effect of this mediator. To determine the roles of the spleen in this model, spleen vessels were carefully cauterized and the spleen was removed either on day 0 or 14 after BLM challenge. Splenocytes significantly ameliorated BLM-induced pulmonary fibrosis when they were administered on day 14. This effect was abrogated by depleting Tregs with an anti-CD25 monoclonal antibody. Adoptive transfer of Tregs on day 14 after a BLM challenge significantly attenuated pulmonary fibrosis, and this was accompanied by decreased production of fibroblast growth factor (FGF) 9-positive cells bearing the morphology of alveolar epithelial cells. In addition, BLM-induced plasma IL-10 expression reverted to basal levels after adoptive transfer of Tregs. Moreover, BLM-induced fibrocyte chemoattractant chemokine (CC motif) ligand-2 production was significantly ameliorated by Treg adoptive transfer in lung homogenates, accompanied by reduced accumulation of bone-marrow derived fibrocytes. Genetic ablation of IL-10 abrogated the ameliorating effect of Tregs on pulmonary fibrosis. Finally, splenectomy on day 0 after a BLM challenge significantly ameliorated lung fibrosis, whereas splenectomy on day 14 had no effect. These findings warrant further investigations to develop a cell-based therapy using Tregs for treating IPF.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 19%
Student > Master 4 10%
Student > Bachelor 3 7%
Student > Ph. D. Student 3 7%
Student > Doctoral Student 2 5%
Other 6 14%
Unknown 16 38%
Readers by discipline Count As %
Medicine and Dentistry 7 17%
Biochemistry, Genetics and Molecular Biology 6 14%
Agricultural and Biological Sciences 3 7%
Immunology and Microbiology 3 7%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Other 4 10%
Unknown 17 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 April 2018.
All research outputs
#19,951,180
of 25,382,440 outputs
Outputs from Respiratory Research
#2,510
of 3,062 outputs
Outputs of similar age
#249,967
of 339,945 outputs
Outputs of similar age from Respiratory Research
#57
of 73 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,945 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 73 others from the same source and published within six weeks on either side of this one. This one is in the 5th percentile – i.e., 5% of its contemporaries scored the same or lower than it.