↓ Skip to main content

The impact of FGFR1 and FRS2α expression on sorafenib treatment in metastatic renal cell carcinoma

Overview of attention for article published in BMC Cancer, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The impact of FGFR1 and FRS2α expression on sorafenib treatment in metastatic renal cell carcinoma
Published in
BMC Cancer, April 2015
DOI 10.1186/s12885-015-1302-1
Pubmed ID
Authors

Thai H Ho, Xian-De Liu, Yanqing Huang, Carla L Warneke, Marcella M Johnson, Anh Hoang, Pheroze Tamboli, Fen Wang, Eric Jonasch

Abstract

Angiogenesis plays a role in tumor growth and is partly mediated by factors in both the fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) pathways. Durable clinical responses with VEGF tyrosine kinase inhibitors (TKIs) may be limited by intrinsic tumor resistance. We hypothesized that FGF signaling may impact clinical responses to sorafenib. Nephrectomy material was available from 40 patients with metastatic renal cell carcinoma (RCC) enrolled in a phase II clinical trial of sorafenib ± interferon (ClinicalTrials.gov Identifier NCT00126594). Fibroblast growth factor receptor 1 (FGFR1) and fibroblast growth factor receptor substrate 2 alpha (FRS2α) expression was assessed by in situ hybridization and immunofluorescence, respectively. The relationship between fibroblast growth factor pathway marker levels and progression-free survival (PFS) was analyzed using Kaplan-Meier and Cox proportional hazards regression methods. Univariate analysis indicated that more intense FGFR1 staining was associated with shorter PFS (log-rank P = 0.0452), but FRS2α staining was not significantly associated with PFS (log-rank P = 0.2610). Multivariate Cox proportional hazards regression models were constructed for FGFR1 and FRS2α individually, adjusting for baseline Eastern Cooperative Oncology Group performance status, treatment arm and anemia status. When adjusted for each of these variables, the highest intensity level of FGFR1 (level 3 or 4) had increased progression risk relative to the lowest intensity level of FGFR1 (level 1) (P = 0.0115). The highest intensity level of FRS2α (level 3 or 4) had increased progression risk relative to the lowest intensity level of FRS2α (level 1) (P = 0.0126). Increased expression of FGFR1 and FRS2α was associated with decreased PFS among patients with metastatic RCC treated with sorafenib. The results suggest that FGF pathway activation may impact intrinsic resistance to VEGF receptor inhibition.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 17%
Researcher 5 12%
Student > Master 4 10%
Other 3 7%
Student > Bachelor 3 7%
Other 6 15%
Unknown 13 32%
Readers by discipline Count As %
Medicine and Dentistry 12 29%
Biochemistry, Genetics and Molecular Biology 4 10%
Agricultural and Biological Sciences 4 10%
Nursing and Health Professions 3 7%
Social Sciences 1 2%
Other 1 2%
Unknown 16 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 April 2015.
All research outputs
#15,329,087
of 22,799,071 outputs
Outputs from BMC Cancer
#4,105
of 8,296 outputs
Outputs of similar age
#157,586
of 265,112 outputs
Outputs of similar age from BMC Cancer
#137
of 271 outputs
Altmetric has tracked 22,799,071 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,296 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,112 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 271 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.