↓ Skip to main content

Comparative mapping combined with homology-based cloning of the rice genome reveals candidate genes for grain zinc and iron concentration in maize

Overview of attention for article published in BMC Genomic Data, February 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparative mapping combined with homology-based cloning of the rice genome reveals candidate genes for grain zinc and iron concentration in maize
Published in
BMC Genomic Data, February 2015
DOI 10.1186/s12863-015-0176-1
Pubmed ID
Authors

Tiantian Jin, Jingtang Chen, Liying Zhu, Yongfeng Zhao, Jinjie Guo, Yaqun Huang

Abstract

Grain zinc and iron concentration is a complex trait that is controlled by quantitative trait loci (QTL) and is important for maintaining body health. Despite the substantial effort that has been put into identifying QTL for grain zinc and iron concentration, the integration of independent QTL is useful for understanding the genetic foundation of traits. The number of QTL for grain zinc and iron concentration is relatively low in a single species. Therefore, combined analysis of different genomes may help overcome this challenge. As a continuation of our work on maize, meta-analysis of QTL for grain zinc and iron concentration in rice was performed to identify meta-QTL (MQTL). Based on MQTL in rice and maize, comparative mapping combined with homology-based cloning was performed to identify candidate genes for grain zinc and iron concentration in maize. In total, 22 MQTL in rice, 4 syntenic MQTL-related regions, and 3 MQTL-containing candidate genes in maize (ortho-mMQTL) were detected. Two maize orthologs of rice, GRMZM2G366919 and GRMZM2G178190, were characterized as natural resistance-associated macrophage protein (NRAMP) genes and considered to be candidate genes. Phylogenetic analysis of NRAMP genes among maize, rice, and Arabidopsis thaliana further demonstrated that they are likely responsible for the natural variation of maize grain zinc and iron concentration. Syntenic MQTL-related regions and ortho-mMQTL are prime areas for future investigation as well as for marker-assisted selection breeding programs. Furthermore, the combined method using the rice genome that was used in this study can shed light on other species and help direct future quantitative trait research. In conclusion, these results help elucidate the molecular mechanism that underlies grain zinc and iron concentration in maize.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 2%
Unknown 60 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 25%
Student > Ph. D. Student 13 21%
Student > Master 8 13%
Student > Doctoral Student 5 8%
Other 2 3%
Other 4 7%
Unknown 14 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 34 56%
Biochemistry, Genetics and Molecular Biology 7 11%
Environmental Science 1 2%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Computer Science 1 2%
Other 2 3%
Unknown 15 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 April 2015.
All research outputs
#22,759,452
of 25,374,647 outputs
Outputs from BMC Genomic Data
#1,008
of 1,204 outputs
Outputs of similar age
#316,792
of 369,481 outputs
Outputs of similar age from BMC Genomic Data
#18
of 22 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,204 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 369,481 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.