↓ Skip to main content

How does temperature affect functional kleptoplasty? Comparing populations of the solar-powered sister-species Elysia timida Risso, 1818 and Elysia cornigera Nuttall, 1989 (Gastropoda: Sacoglossa)

Overview of attention for article published in Frontiers in Zoology, April 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)

Mentioned by

twitter
8 tweeters
wikipedia
1 Wikipedia page

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
How does temperature affect functional kleptoplasty? Comparing populations of the solar-powered sister-species Elysia timida Risso, 1818 and Elysia cornigera Nuttall, 1989 (Gastropoda: Sacoglossa)
Published in
Frontiers in Zoology, April 2018
DOI 10.1186/s12983-018-0264-y
Pubmed ID
Authors

Elise Marie Jerschabek Laetz, Heike Wägele

Abstract

Despite widespread interest in solar-powered sea slugs (Sacoglossa: Gastropoda), relatively little is know about how they actually perform functional kleptoplasty. Sister-taxa Elysia timida and E. cornigera provide an ideal model system for investigating this phenomenon, since they feed on the same algal genus and only E. timida is capable of long-term kleptoplasty. Recent research has explored factors regarding functional kleptoplasty in E. timida, including their starvation longevity, digestive activity, autophagal response and photosynthetic efficiency under two different temperature conditions (18 °C and 21 °C). These studies revealed the trends E. timida displays regarding each factor during starvation as well as influences temperature has on some aspects of functional kleptoplasty. This study examines E. cornigera regarding each of these factors in an attempt to elucidate differences between each species that could explain their differing kleptoplastic abilities. Since both species naturally occur in 25 °C seawater (E. timida peak summer temperature, E. cornigera low winter temperature), each species was acclimatized to 25 °C to facilitate comparison and determine if these species exhibit physiological differences to starvation when under the same environmental conditions. When comparing the different E. timida temperature treatments, it becomes clear that increased temperatures compromise E. timida's kleptoplastic abilities. Specimens acclimatized to 25 °C revealed shorter starvation longevities surviving an average 42.4 days compared to the 95.9 day average observed in specimens exposed to 18 °C. Each temperature treatment displayed a significantly different decrease throughout the starvation period in both, the rate of photosynthetic efficiency and in the decreasing functional kleptoplast abundance. Lysosomal abundances are assessed here as indicators of different aspects of metabolic activity, which could be correlated to temperature. E. cornigera, also acclimatized to 25 °C did not display significantly similar patterns as any of the E. timida temperature treatments, having fewer incorporated kleptoplasts, a higher lysosomal response to starvation, a faster decrease in photosynthetic efficiency and a lower starvation longevity. These results confirm that each species has different physiological reactions to starvation and kleptoplast retention, even under the same conditions. While temperature affects aspects of functional kleptoplasty, it is likely not responsible for the differences in kleptoplastic abilities seen in these species.

Twitter Demographics

The data shown below were collected from the profiles of 8 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 25%
Other 3 13%
Researcher 3 13%
Professor 2 8%
Student > Master 2 8%
Other 2 8%
Unknown 6 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 46%
Biochemistry, Genetics and Molecular Biology 3 13%
Environmental Science 1 4%
Economics, Econometrics and Finance 1 4%
Earth and Planetary Sciences 1 4%
Other 1 4%
Unknown 6 25%

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 April 2021.
All research outputs
#3,355,356
of 20,981,820 outputs
Outputs from Frontiers in Zoology
#211
of 636 outputs
Outputs of similar age
#66,441
of 295,647 outputs
Outputs of similar age from Frontiers in Zoology
#1
of 1 outputs
Altmetric has tracked 20,981,820 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 636 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.7. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 295,647 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them