↓ Skip to main content

β2-microglobulin induces epithelial-mesenchymal transition in human renal proximal tubule epithelial cells in vitro

Overview of attention for article published in BMC Nephrology, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
β2-microglobulin induces epithelial-mesenchymal transition in human renal proximal tubule epithelial cells in vitro
Published in
BMC Nephrology, April 2015
DOI 10.1186/s12882-015-0057-x
Pubmed ID
Authors

Aiqing Zhang, Bin Wang, Min Yang, Huimin Shi, Weihua Gan

Abstract

The objective of this study was to investigate the influence of β2-microglobulin (β2-M) on the epithelial-mesenchymal transition (EMT) in renal tubular epithelial cells. A human kidney proximal tubular cell line (HK-2) was used as the proximal tubular cell model. HK-2 cells were exposed to different concentrations of β2-M (5, 10, 25, and 50 μM) for up to 24, 48 and 72 h. The effects of β2-M on cell morphology were observed by phase contrast microscopy, and the possible associated mechanisms were assessed by immunofluorescence staining, western blot, RNA interference, immunoprecipitation, and induced coupled plasma mass spectroscopy. β2-M induced marked morphological alterations in the HK-2 cells, accompanied by the increased expression of extracellular matrix components and α-smooth muscle actin (α-SMA), vimentin and fibronectin and the reduced expression of E-cadherin. Our results also revealed that β2-M could induce the EMT in the HK-2 cells without significant affecting cell viability. Excess β2-M in the HK-2 cells led to a decrease in iron and an increase in hypoxia inducible factor-1α (HIF-1α), which induced EMT in the HK-2 cells. Additionally, disrupting the function of the β2-M/hemochromatosis (HFE) complex by HFE knockdown was sufficient to reverse β2-M-mediated EMT in the HK-2 cells. These findings demonstrate that the activity of β2-M is mediated by the β2-M/HFE complex, which regulates intracellular iron homeostasis and HIF-1α and ultimately induces EMT in HK2 cells.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 29%
Researcher 2 14%
Student > Bachelor 1 7%
Student > Master 1 7%
Student > Doctoral Student 1 7%
Other 0 0%
Unknown 5 36%
Readers by discipline Count As %
Medicine and Dentistry 4 29%
Agricultural and Biological Sciences 2 14%
Immunology and Microbiology 1 7%
Environmental Science 1 7%
Unknown 6 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 April 2015.
All research outputs
#15,330,127
of 22,800,560 outputs
Outputs from BMC Nephrology
#1,444
of 2,465 outputs
Outputs of similar age
#157,666
of 265,380 outputs
Outputs of similar age from BMC Nephrology
#29
of 50 outputs
Altmetric has tracked 22,800,560 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,465 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,380 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 50 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.