↓ Skip to main content

Posttranslational modification and mutation of histidine 50 trigger alpha synuclein aggregation and toxicity

Overview of attention for article published in Molecular Neurodegeneration, March 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Readers on

mendeley
66 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Posttranslational modification and mutation of histidine 50 trigger alpha synuclein aggregation and toxicity
Published in
Molecular Neurodegeneration, March 2015
DOI 10.1186/s13024-015-0004-0
Pubmed ID
Authors

Wei Xiang, Stefanie Menges, Johannes CM Schlachetzki, Holger Meixner, Anna-Carin Hoffmann, Ursula Schlötzer-Schrehardt, Cord-Michael Becker, Jürgen Winkler, Jochen Klucken

Abstract

Aggregation and aggregation-mediated formation of toxic alpha synuclein (aSyn) species have been linked to the pathogenesis of sporadic and monogenic Parkinson's disease (PD). A novel H50Q mutation of aSyn, resulting in the substitution of histidine by glutamine, has recently been identified in PD patients. We have previously shown that the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) induces the formation of HNE-aSyn adducts, thereby promoting aSyn oligomerization and increasing its extracellular toxicity to human dopaminergic neurons. Intriguingly, we identified histidine 50 (H50) of aSyn as one of the HNE modification target residues. These converging lines of evidence support the hypothesis that changes in H50 via posttranslational modification (PTM) and mutation trigger the formation of aggregated, toxic aSyn species, which interfere with cellular homeostasis. In the present study, we aim to elucidate 1) the role of H50 in HNE-mediated aSyn aggregation and toxicity, and 2) the impact of H50 mutation on aSyn pathology. Besides the PD-related H50Q, we analyze a PD-unrelated control mutation, in which H50 is replaced by an arginine residue (H50R). Analysis of HNE-treated aSyn revealed that H50 is the most susceptible residue of aSyn to HNE modification and is crucial for HNE-mediated aSyn oligomerization. Overexpression of aSyn with substituted H50 in H4 neuroglioma cells reduced HNE-induced cell damage, indicating a pivotal role of H50 in HNE modification-induced aSyn toxicity. Furthermore, we showed in vitro that H50Q/R mutations substantially increase the formation of high density and fibrillar aSyn species, and potentiate the oligomerization propensity of aSyn in the presence of a nitrating agent. Cell-based experiments also revealed that overexpression of H50Q aSyn in H4 cells promotes aSyn oligomerization. Importantly, overexpression of both H50Q/R aSyn mutants in H4 cells significantly increased cell death when compared to wild type aSyn. This increase in cell death was further exacerbated by the application of H2O2. A dual approach addressing alterations of H50 showed that either H50 PTM or mutation trigger aSyn aggregation and toxicity, suggesting an important role of aSyn H50 in the pathogenesis of both sporadic and monogenic PD.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 66 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 2%
Unknown 65 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 26%
Student > Master 13 20%
Student > Bachelor 6 9%
Researcher 5 8%
Student > Postgraduate 5 8%
Other 12 18%
Unknown 8 12%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 20 30%
Agricultural and Biological Sciences 12 18%
Chemistry 9 14%
Neuroscience 8 12%
Medicine and Dentistry 4 6%
Other 5 8%
Unknown 8 12%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 September 2015.
All research outputs
#3,710,488
of 25,374,917 outputs
Outputs from Molecular Neurodegeneration
#594
of 977 outputs
Outputs of similar age
#45,662
of 274,515 outputs
Outputs of similar age from Molecular Neurodegeneration
#15
of 16 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 977 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 16.6. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,515 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one is in the 6th percentile – i.e., 6% of its contemporaries scored the same or lower than it.