↓ Skip to main content

The genomes of two key bumblebee species with primitive eusocial organization

Overview of attention for article published in Genome Biology, April 2015
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

news
9 news outlets
twitter
47 X users
facebook
5 Facebook pages
wikipedia
4 Wikipedia pages
googleplus
2 Google+ users

Citations

dimensions_citation
344 Dimensions

Readers on

mendeley
519 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The genomes of two key bumblebee species with primitive eusocial organization
Published in
Genome Biology, April 2015
DOI 10.1186/s13059-015-0623-3
Pubmed ID
Authors

Ben M Sadd, Seth M Barribeau, Guy Bloch, Dirk C de Graaf, Peter Dearden, Christine G Elsik, Jürgen Gadau, Cornelis JP Grimmelikhuijzen, Martin Hasselmann, Jeffrey D Lozier, Hugh M Robertson, Guy Smagghe, Eckart Stolle, Matthias Van Vaerenbergh, Robert M Waterhouse, Erich Bornberg-Bauer, Steffen Klasberg, Anna K Bennett, Francisco Câmara, Roderic Guigó, Katharina Hoff, Marco Mariotti, Monica Munoz-Torres, Terence Murphy, Didac Santesmasses, Gro V Amdam, Matthew Beckers, Martin Beye, Matthias Biewer, Márcia MG Bitondi, Mark L Blaxter, Andrew FG Bourke, Mark JF Brown, Severine D Buechel, Rossanah Cameron, Kaat Cappelle, James C Carolan, Olivier Christiaens, Kate L Ciborowski, David F Clarke, Thomas J Colgan, David H Collins, Andrew G Cridge, Tamas Dalmay, Stephanie Dreier, Louis du Plessis, Elizabeth Duncan, Silvio Erler, Jay Evans, Tiago Falcon, Kevin Flores, Flávia CP Freitas, Taro Fuchikawa, Tanja Gempe, Klaus Hartfelder, Frank Hauser, Sophie Helbing, Fernanda C Humann, Frano Irvine, Lars S Jermiin, Claire E Johnson, Reed M Johnson, Andrew K Jones, Tatsuhiko Kadowaki, Jonathan H Kidner, Vasco Koch, Arian Köhler, F Bernhard Kraus, H Michael G Lattorff, Megan Leask, Gabrielle A Lockett, Eamonn B Mallon, David S Marco Antonio, Monika Marxer, Ivan Meeus, Robin FA Moritz, Ajay Nair, Kathrin Näpflin, Inga Nissen, Jinzhi Niu, Francis MF Nunes, John G Oakeshott, Amy Osborne, Marianne Otte, Daniel G Pinheiro, Nina Rossié, Olav Rueppell, Carolina G Santos, Regula Schmid-Hempel, Björn D Schmitt, Christina Schulte, Zilá LP Simões, Michelle PM Soares, Luc Swevers, Eva C Winnebeck, Florian Wolschin, Na Yu, Evgeny M Zdobnov, Peshtewani K Aqrawi, Kerstin P Blankenburg, Marcus Coyle, Liezl Francisco, Alvaro G Hernandez, Michael Holder, Matthew E Hudson, LaRonda Jackson, Joy Jayaseelan, Vandita Joshi, Christie Kovar, Sandra L Lee, Robert Mata, Tittu Mathew, Irene F Newsham, Robin Ngo, Geoffrey Okwuonu, Christopher Pham, Ling-Ling Pu, Nehad Saada, Jireh Santibanez, DeNard Simmons, Rebecca Thornton, Aarti Venkat, Kimberly KO Walden, Yuan-Qing Wu, Griet Debyser, Bart Devreese, Claire Asher, Julie Blommaert, Ariel D Chipman, Lars Chittka, Bertrand Fouks, Jisheng Liu, Meaghan P O’Neill, Seirian Sumner, Daniela Puiu, Jiaxin Qu, Steven L Salzberg, Steven E Scherer, Donna M Muzny, Stephen Richards, Gene E Robinson, Richard A Gibbs, Paul Schmid-Hempel, Kim C Worley

Abstract

The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 47 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 519 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 8 2%
United Kingdom 5 <1%
Brazil 2 <1%
Germany 2 <1%
New Zealand 2 <1%
Colombia 1 <1%
Serbia 1 <1%
Unknown 498 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 124 24%
Researcher 88 17%
Student > Master 54 10%
Student > Bachelor 51 10%
Professor > Associate Professor 28 5%
Other 94 18%
Unknown 80 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 261 50%
Biochemistry, Genetics and Molecular Biology 94 18%
Medicine and Dentistry 11 2%
Neuroscience 8 2%
Social Sciences 7 1%
Other 36 7%
Unknown 102 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 101. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 November 2021.
All research outputs
#422,890
of 26,017,215 outputs
Outputs from Genome Biology
#223
of 4,513 outputs
Outputs of similar age
#4,641
of 282,518 outputs
Outputs of similar age from Genome Biology
#5
of 69 outputs
Altmetric has tracked 26,017,215 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,513 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 27.7. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 282,518 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 69 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.