↓ Skip to main content

Activation and regulation of the granulation tissue derived cells with stemness-related properties

Overview of attention for article published in Stem Cell Research & Therapy, April 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Activation and regulation of the granulation tissue derived cells with stemness-related properties
Published in
Stem Cell Research & Therapy, April 2015
DOI 10.1186/s13287-015-0070-9
Pubmed ID
Authors

Zelin Chen, Tingyu Dai, Xia Chen, Li Tan, Chunmeng Shi

Abstract

Skin as the largest and easily accessible organ of the body represents an abundant source of adult stem cells. Among them, dermal stem cells hold great promise in tissue repair and the skin granulation tissue has been recently proposed as a promising source of dermal stem cells, but their biological characteristics have not been well investigated. The 5-bromo-2'-deoxyuridine (BrdU) lineage tracing approach was employed to chase dermal stem cells in vivo. Granulation tissue derived cells (GTCs) were isolated and their in vitro proliferation, self-renewing, migration, and multi-differentiation capabilities were assessed. Combined radiation and skin wound model was used to investigate the therapeutic effects of GTCs. MicroRNA-21 (miR-21) antagomir was used to antagonize miR-21 expression. Reactive oxygen species (ROS) were scavenged by N-acetyl cysteine (NAC). The quiescent dermal stem/progenitor cells were activated to proliferate upon injury and enriched in granulation tissues. GTCs exhibited enhanced proliferation, colony formation and multi-differentiation capacities. Topical transplantion of GTCs into the combined radiation and skin wound mice accelerated wound healing and reduced tissue fibrosis. Blockade of the miR-21 expression in GTCs inhibited cell migration and differentiation, but promoted cell proliferation and self-renewing at least partiallyvia a ROS dependent pathway. The granulation tissue may represent an alternative adult stem cell source in tissue replacement therapy and miR-21 mediated ROS generation negatively regulates the stemness-related properties of granulation tissue derived cells.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 30%
Student > Ph. D. Student 5 22%
Student > Bachelor 3 13%
Student > Master 3 13%
Lecturer 1 4%
Other 0 0%
Unknown 4 17%
Readers by discipline Count As %
Medicine and Dentistry 6 26%
Biochemistry, Genetics and Molecular Biology 4 17%
Agricultural and Biological Sciences 3 13%
Neuroscience 2 9%
Social Sciences 1 4%
Other 1 4%
Unknown 6 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 May 2015.
All research outputs
#20,271,607
of 22,803,211 outputs
Outputs from Stem Cell Research & Therapy
#2,044
of 2,418 outputs
Outputs of similar age
#222,943
of 264,547 outputs
Outputs of similar age from Stem Cell Research & Therapy
#58
of 65 outputs
Altmetric has tracked 22,803,211 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,418 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,547 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 65 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.