↓ Skip to main content

Inhibition of cyclo-oxygenase 2 reduces tumor metastasis and inflammatory signaling during blockade of vascular endothelial growth factor

Overview of attention for article published in Vascular Cell, October 2011
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inhibition of cyclo-oxygenase 2 reduces tumor metastasis and inflammatory signaling during blockade of vascular endothelial growth factor
Published in
Vascular Cell, October 2011
DOI 10.1186/2045-824x-3-22
Pubmed ID
Authors

Jason C Fisher, Jeffrey W Gander, Mary Jo Haley, Sonia L Hernandez, Jianzhong Huang, Yan-Jung Chang, Tessa B Johung, Paolo Guarnieri, Kathleen O'Toole, Darrell J Yamashiro, Jessica J Kandel

Abstract

Vascular endothelial growth factor (VEGF) blockade is an effective therapy for human cancer, yet virtually all neoplasms resume primary tumor growth or metastasize during therapy. Mechanisms of progression have been proposed to include genes that control vascular remodeling and are elicited by hypoperfusion, such as the inducible enzyme cyclooxygenase-2 (COX-2). We have previously shown that COX-2 inhibition by the celecoxib analog SC236 attenuates perivascular stromal cell recruitment and tumor growth. We therefore examined the effect of combined SC236 and VEGF blockade, using the metastasizing orthotopic SKNEP1 model of pediatric cancer. Combined treatment perturbed tumor vessel remodeling and macrophage recruitment, but did not further limit primary tumor growth as compared to VEGF blockade alone. However, combining SC236 and VEGF inhibition significantly reduced the incidence of lung metastasis, suggesting a distinct effect on prometastatic mechanisms. We found that SC236 limited tumor cell viability and migration in vitro, with effects enhanced by hypoxia, but did not change tumor proliferation or matrix metalloproteinase expression in vivo. Gene set expression analysis (GSEA) indicated that the addition of SC236 to VEGF inhibition significantly reduced expression of gene sets linked to macrophage mobilization. Perivascular recruitment of macrophages induced by VEGF blockade was disrupted in tumors treated with combined VEGF- and COX-2-inhibition. Collectively, these findings suggest that during VEGF blockade COX-2 may restrict metastasis by limiting both prometastatic behaviors in individual tumor cells and mobilization of macrophages to the tumor vasculature.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Professor > Associate Professor 5 29%
Researcher 3 18%
Student > Master 2 12%
Student > Ph. D. Student 1 6%
Student > Bachelor 1 6%
Other 1 6%
Unknown 4 24%
Readers by discipline Count As %
Medicine and Dentistry 5 29%
Agricultural and Biological Sciences 3 18%
Biochemistry, Genetics and Molecular Biology 2 12%
Business, Management and Accounting 1 6%
Environmental Science 1 6%
Other 1 6%
Unknown 4 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 October 2011.
All research outputs
#22,759,802
of 25,374,917 outputs
Outputs from Vascular Cell
#59
of 72 outputs
Outputs of similar age
#134,555
of 145,919 outputs
Outputs of similar age from Vascular Cell
#4
of 6 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 72 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 145,919 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.