↓ Skip to main content

Drosophila Cyclin G and epigenetic maintenance of gene expression during development

Overview of attention for article published in Epigenetics & Chromatin, May 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (74th percentile)

Mentioned by

twitter
9 X users
facebook
1 Facebook page

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Drosophila Cyclin G and epigenetic maintenance of gene expression during development
Published in
Epigenetics & Chromatin, May 2015
DOI 10.1186/s13072-015-0008-6
Pubmed ID
Authors

Camille A Dupont, Delphine Dardalhon-Cuménal, Michael Kyba, Hugh W Brock, Neel B Randsholt, Frédérique Peronnet

Abstract

Cyclins and cyclin-dependent kinases (CDKs) are essential for cell cycle regulation and are functionally associated with proteins involved in epigenetic maintenance of transcriptional patterns in various developmental or cellular contexts. Epigenetic maintenance of transcription patterns, notably of Hox genes, requires the conserved Polycomb-group (PcG), Trithorax-group (TrxG), and Enhancer of Trithorax and Polycomb (ETP) proteins, particularly well studied in Drosophila. These proteins form large multimeric complexes that bind chromatin and appose or recognize histone post-translational modifications. PcG genes act as repressors, counteracted by trxG genes that maintain gene activation, while ETPs interact with both, behaving alternatively as repressors or activators. Drosophila Cyclin G negatively regulates cell growth and cell cycle progression, binds and co-localizes with the ETP Corto on chromatin, and participates with Corto in Abdominal-B Hox gene regulation. Here, we address further implications of Cyclin G in epigenetic maintenance of gene expression. We show that Cyclin G physically interacts and extensively co-localizes on chromatin with the conserved ETP Additional sex combs (ASX), belonging to the repressive PR-DUB complex that participates in H2A deubiquitination and Hox gene silencing. Furthermore, Cyclin G mainly co-localizes with RNA polymerase II phosphorylated on serine 2 that is specific to productive transcription. CycG interacts with Asx, PcG, and trxG genes in Hox gene maintenance, and behaves as a PcG gene. These interactions correlate with modified ectopic Hox protein domains in imaginal discs, consistent with a role for Cyclin G in PcG-mediated Hox gene repression. We show here that Drosophila CycG is a Polycomb-group gene enhancer, acting in epigenetic maintenance of the Hox genes Sex combs reduced (Scr) and Ultrabithorax (Ubx). However, our data suggest that Cyclin G acts alternatively as a transcriptional activator or repressor depending on the developmental stage, the tissue or the target gene. Interestingly, since Cyclin G interacts with several CDKs, Cyclin G binding to the ETPs ASX or Corto suggests that their activity could depend on Cyclin G-mediated phosphorylation. We discuss whether Cyclin G fine-tunes transcription by controlling H2A ubiquitination and transcriptional elongation via interaction with the ASX subunit of PR-DUB.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 5%
Unknown 19 95%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 3 15%
Professor > Associate Professor 3 15%
Researcher 3 15%
Student > Ph. D. Student 3 15%
Other 1 5%
Other 3 15%
Unknown 4 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 30%
Biochemistry, Genetics and Molecular Biology 6 30%
Environmental Science 1 5%
Computer Science 1 5%
Medicine and Dentistry 1 5%
Other 0 0%
Unknown 5 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 June 2015.
All research outputs
#5,877,602
of 23,577,654 outputs
Outputs from Epigenetics & Chromatin
#225
of 574 outputs
Outputs of similar age
#67,298
of 265,815 outputs
Outputs of similar age from Epigenetics & Chromatin
#8
of 9 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 574 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,815 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one.