↓ Skip to main content

Prevalence and genetic diversity of endosymbiotic bacteria infecting cassava whiteflies in Africa

Overview of attention for article published in BMC Microbiology, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
58 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Prevalence and genetic diversity of endosymbiotic bacteria infecting cassava whiteflies in Africa
Published in
BMC Microbiology, May 2015
DOI 10.1186/s12866-015-0425-5
Pubmed ID
Authors

Saptarshi Ghosh, Sophie Bouvaine, MN Maruthi

Abstract

Cassava provides over half of the dietary requirement for more than 200 million poor in Africa. In recent years, cassava has been affected by an epidemic of a virus disease called cassava brown streak disease (CBSD) that is spreading in much of eastern and central Africa, affecting food security and the economic development of the poor. The viruses that cause CBSD are transmitted by the insect vector whitefly (Bemisia tabaci), which have increased to very high numbers in some African countries. Strains of endosymbiotic bacteria infecting whiteflies have been reported to interact specifically with different whitefly populations with varied effects on its host biology and efficiency of virus transmission. The main aim of this study was therefore to investigate the prevalence and diversity of the secondary endosymbiotic bacteria infecting cassava whiteflies with a view to better understand their role on insect population dynamics and virus disease epidemics. The genetic diversity of field-collected whitefly from Tanzania, Malawi, Uganda and Nigeria was determined by mitochondrial DNA based phylogeny and restriction fragment length polymorphism. Cassava in these countries was infected with five whitefly populations, and each one was infected with different endosymbiotic bacteria. Incidences of Arsenophonus, Rickettsia, Wolbachia and Cardinium varied amongst the populations. Wolbachia was the most predominant symbiont with infection levels varying from 21 to 97%. Infection levels of Arsenophonus varied from 17 to 64% and that of Rickettsia was 0 to 53%. Hamiltonella and Fritschea were absent in all the samples. Multiple locus sequence typing identified four different strains of Wolbachia infecting cassava whiteflies. A common strain of Wolbachia infected the whitefly population Sub-Saharan Africa 1-subgroup 1 (SSA1-SG1) and SSA1-SG2, while others were infected with different strains. Phylogeny based on 16S rDNA of Rickettsia and 23S rDNA of Arsenophonus also identified distinct strains. Genetically diverse bacteria infect cassava whiteflies in Africa with varied prevalence across different host populations, which may affect their whitefly biology. Further studies are required to investigate the role of endosymbionts to better understand the whitefly population dynamics.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 15%
Researcher 7 15%
Student > Master 5 11%
Student > Bachelor 3 7%
Student > Doctoral Student 2 4%
Other 8 17%
Unknown 14 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 46%
Biochemistry, Genetics and Molecular Biology 3 7%
Immunology and Microbiology 2 4%
Environmental Science 1 2%
Social Sciences 1 2%
Other 2 4%
Unknown 16 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 May 2015.
All research outputs
#16,099,609
of 23,881,329 outputs
Outputs from BMC Microbiology
#1,827
of 3,286 outputs
Outputs of similar age
#159,924
of 266,463 outputs
Outputs of similar age from BMC Microbiology
#23
of 37 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,286 research outputs from this source. They receive a mean Attention Score of 4.2. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,463 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.